Programming Guide

Agilent Technologies
E8663B Analog Signal Generator

For the latest revision of this guide, go to http://www.agilent.com/find/e8663b.
Click Technical Support > Get aManual.

-:::' Agilent Technologies

Manufacturing Part Number:
E8663- 90005

Printed in USA
June 2006

© Copyright 2006 Agilent Technologies, Inc.

Notice

The material contained in this document is provided “as is”, and is subject to being changed, without
notice, in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either
express or implied with regard to this manual and to any of the Agilent products to which it
pertains, including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in
connection with the furnishing, use, or performance of this document or any of the Agilent products
to which it pertains. Should Agilent have a written contract with the User and should any of the
contract terms conflict with these terms, the contract terms shall control.

Contents

1 Getting Started with Remote Operation

Programming and Software/Hardware Layers. 2
Interfaces e 3
I0 Libraries and Programming Languages. i 4
Agilent 10 Libraries Suite 4
Windows NT and Agilent 10 Libraries M (and Earlier) 5
Select 10 Libraries for GPIB. e e 6
Selecting IO Libraries for LAN e 7
Programming Languages. e e e 7
Using the Web Browser. e e 8
Enabling the Signal Generator Web Server 9
Preferences e e 11
Configuring the Display for Remote Command Setups. 12
Setting the Help Mode. 12
Error Messages e e e 13
Error Message File e 13
Error Message Types. o o i i i i i e e e e e 14

2 Using IO Interfaces

Using GPIB e e e 16
Installing the GPIB Interface i 16
Set Up the GPIB Interface e 18
Verify GPIB Functionality. e 18
GPIB Interface Terms e e 19
GPIB Programming Interface Examples 20
Before Using the GPIB Examples. 20
Interface Check using HP Basic and GPIB. 20
Interface Check Using NI-488.2 and C++. 20
Using LAN . . . o 22
Setting Up the LAN Interface e 23
Verifying LAN Functionality e 26
Using VXI-11 . . o e e e 30
Using Sockets LAN 31
Using Telnet LAN L o e e 32
Using FTP e e 36
Using RS-232 e e 38
Selecting IO Libraries for RS-232 e 38
Setting Up the RS-232 Interface 39
Verifying RS-232 Functionality 41
Character Format Parameters e 42

Agilent E8663B Analog Signal Generator Programming Guide iii

Contents

If You Have Problems e 42
RS-232 Programming Interface Examples. 43
Before Using the Examples e 43
Interface Check Using HP BASIC e 43
Interface Check Using VISA and C i 43
Queries Using HP Basic and RS-232 e 44
Queries for RS-232 Using VISA and C. 44

3 Programming Examples

Using the Programming Interface Examples 46
Programming Examples Development Environment. 46
Running C++ Programs e e 47
Running C# Examples. e 48
Running Basic Examples 48
Running Java Examples. 49
Running MATLAB Examples. e e 49
Running Perl Examples. e 49

Using GPIB e e 50
Installing the GPIB Interface Card 50

GPIB Programming Interface Examples 52
Before Using the GPIB Examples i 52
GPIB Function Statements (Command MesSsages)o v v i it i v 52
Interface Check using HP Basic and GPIB 56
Interface Check Using NI-488.2 and C++ 57
Interface Check for GPIB Using VISA and C. 58
Local Lockout Using HP Basic and GPIB 59
Local Lockout Using NI-488.2 and C++. it e i 60
Queries Using HP Basic and GPIB. i 62
Queries Using NI-488.2 and Visual C++ i 63
Queries for GPIB Using VISA and C e 65
Generating a CW Signal Using VISA and C. 67
Generating an Externally Applied AC-Coupled FM Signal Using VISA and C. 69
Generating an Internal FM Signal Using VISA and C 71
Generating a Step-Swept Signal Using VISA and C++ 73
Generating a Swept Signal Using VISA and Visual C++ 74
Saving and Recalling States Using VISA and C 77
Reading the Data Questionable Status Register Using VISA and C. 79
Reading the Service Request Interrupt (SRQ) Using VISA and C. 83

LAN Programming Interface Examples. e 87
VXI-11 Programming e e e e e e e e 87
VXI-11 Programming Using SICL and C++ 88

iv Agilent E8663B Analog Signal Generator Programming Guide

Contents

VXI-11 Programming Using VISA and C++. i 89
Sockets LAN Programming and C e 91
Queries for Lan Using Sockets e 94
Sockets LAN Programming Using Java 115
Sockets LAN Programming Using PERL 116
RS-232 Programming Interface Examples 118
Before Using the Examples. e 118
Interface Check Using HP BASIC e 118
Interface Check Using VISA and C i 119
Queries Using HP Basic and RS-232 i 121
Queries for RS-232 Using VISA and C i 122

4 Programming the Status Register System

OVEIVIEW . . o o e i i e e e e e e e e e e e e e e e e e 126
Status Register Bit Values e 129
Example: Enable a Register e 129
Example: Query a Register. e 129
Accessing Status Register Information 130
Determining What to Monitor. e 130
Deciding How to Monitor. e e e e 130
Status Register SCPI Commands e i 132
Status Byte Group e e e e 134
Status Byte Register e e e 135
Service Request Enable Register e 135
Status GroUPS o o vt e e e e e 136
Standard Event Status Group e e e 137
Standard Operation Status Group i e 139
Data Questionable Status Group 142
Data Questionable Power Status Group. 145
Data Questionable Frequency Status Group. 148
Data Questionable Modulation Status Group0.... 151
Data Questionable Calibration Status Group 154

5 Creating and Downloading User-Data Files

Save and Recall Instrument State Files 158
Save and Recall SCPI Commandsttt 158
Save and Recall Programming Example Using VISA and C# 158

Download User Flatness Corrections Using C++ and VISA 169

Agilent E8663B Analog Signal Generator Programming Guide v

Contents

vi Agilent E8663B Analog Signal Generator Programming Guide

1 Getting Started with Remote Operation

¢ “Programming and Software/Hardware Layers” on page 2
e “Interfaces” on page 3

e ‘IO Libraries and Programming Languages” on page 4

e “Using the Web Browser” on page 8

e “Preferences” on page 11

* “Error Messages” on page 13

Agilent E8663B Analog Signal Generator Programming Guide

Getting Started with Remote Operation
Programming and Software/Hardware Layers

Programming and Software/Hardware Layers
Agilent ES8663B signal generators support the following interfaces:

« GPIB

¢ LAN

* GPIB, LAN, and ANSI/EIA232 (RS-232) serial connection’

Use these interfaces, in combination with IO libraries and programming languages, to remotely

control a signal generator. Figure 1-1 uses GPIB as an example of the relationships between the
interface, 10 libraries, programming language, and signal generator.

Figure 1-1 Software/Hardware Layers

Programming Language:
C/C++, Visual BASIC, LabView etc.

VISA
A National Instruments
Agilent VISA VISA
) National Instruments
Agilent SICL NI-488 2 Library
Agilent GPIB NI PCI-GPIB
Interface Card Interface Card

Signal Generator

ce910a

1. The E8663B’s AUXILIARY INTERFACE connector is compatible with ANSI/EIA232 (RS-232) serial
connection but GPIB and LAN are recommended for making faster measurements and when
downloading files. Refer to “Using RS-232” on page 38 and the User’s Guide.

2 Agilent E8663B Analog Signal Generator Programming Guide

Getting Started with Remote Operation
Interfaces

Interfaces

GPIB GPIB is used extensively when a dedicated computer is available for remote control of
each instrument or system. Data transfer is fast because GPIB handles information in
8-bit bytes with data transfer rates of up to 8 Mbytes/s. GPIB is physically restricted by
the location and distance between the instrument/system and the computer; cables are
limited to an average length of two meters per device with a total length of 20 meters.

For more information on configuring the signal generator to communicate over the
GPIB, refer to “Using GPIB” on page 16.

LAN Data transfer using the LAN is fast as the LAN handles packets of data. The distance
between a computer and the signal generator is limited to 100 meters. The E8663B is
designed to connect with a 10Base-T LAN. For more information on LAN
communication refer to http:/www.ieee.org.

The following protocols can be used to communicate with the signal generator over the
LAN:

¢ VXI-11 (Recommended)
* Sockets LAN

¢ TELNET

e FTP

For more information on configuring the signal generator to communicate over the LAN,
refer to “Using LAN” on page 22

RS-2322 RS-232 is a common method used to communicate with a single instrument; its primary
use is to control printers and external disk drives, and connect to a modem.
Communication over RS-232 is much slower than with GPIB, or LAN because data is
sent and received one bit at a time. It also requires that certain parameters, such as
baud rate, be matched on both the computer and signal generator.

For more information on configuring the signal generator to communicate over the
GPIB, refer to “Using RS-232” on page 38.

a.The E8663B’s AUXILIARY INTERFACE connector is compatible with ANSI/EIA232 (RS-232) serial connection but GPIB and LAN are
recommended for making faster measurements and when downloading files. Refer to “Using RS-232” on page 38 and the User’s Guide.

Agilent E8663B Analog Signal Generator Programming Guide 3

Getting Started with Remote Operation
10 Libraries and Programming Languages

IO Libraries and Programming Languages

The IO libraries is a collection of functions used by a programming language to send instrument
commands and receive instrument data. Before you can communicate and control the signal
generator, you must have an IO library installed on your computer. The Agilent IO libraries are
included on an Automation- Ready CD with your signal generator and Agilent GPIB interface board,
or they can be downloaded from the Agilent website: http.;//www.agilent.com.

NOTE To learn about using IO libraries with Windows XP or newer operating systems, refer to the
Agilent 10 Libraries Suite’s help located on the Automation-Ready CD that ships with your
signal generator, Agilent GPIB interface board, or that can be downloaded from the Agilent
website: http.//www.agilent.com.

To better understand setting up Windows XP operating systems and newer, using PC LAN
port settings, refer to Chapter 2.

Agilent 10 Libraries Suite

The Agilent IO Libraries Suite replaces earlier versions of the Agilent 10 Libraries and is supported
on all platforms except Windows NT. If you are using the Windows NT platform, you must use Agilent
10 Libraries version M or earlier.

Windows 98 and Windows ME are not supported in the Agilent IO Libraries Suite version 14.1 and
higher.

NOTE The signal generator ships with an Automation-Ready CD that contains the Agilent 10
Libraries Suite 14.0 for users who need support for Windows 98 and Windows ME.

Once the libraries are loaded, you can use the Agilent Connection Expert, Interactive 10, or VISA
Assistant to configure and communicate with the signal generator over different IO interfaces. Follow
instructions in the setup wizard to install the libraries.

NOTE Before setting the LAN interface the signal generator must be configured for VXI-11 SCPIL
Refer to “Configuring the VXI-11 for LAN” on page 23.

Refer to the Agilent I0 Libraries Suite Help documentation for details about this software.

4 Agilent E8663B Analog Signal Generator Programming Guide

Getting Started with Remote Operation
10 Libraries and Programming Languages

Windows NT and Agilent IO Libraries M (and Earlier)

NOTE Windows NT is not supported on Agilent I0 Libraries 14.0 and newer.

The following sections are specific to Agilent I0 Libraries versions M and earlier and apply
only to the Windows NT platform.

Using 10 Config for Computer-to-Instrument Communication with VISA (Automatic or Manually)

After installing the Agilent IO Libraries version M or earlier, you can configure the interfaces
available on your computer by using the 10 Config program. This program can setup the interfaces
that you want to use to control the signal generator. The following steps set up the interfaces.

1. Install GPIB interface boards before running I0 Config.

NOTE You can also connect GPIB instruments using the Agilent 82357A USB/GPIB Interface
Converter, which eliminates the need for a GPIB card. For more information, go to
http://www.agilent.com/find/gpib.

Run the I0 Config program. The program automatically identifies available interfaces.

Click on the interface type you want to configure, such as GPIB, in the Available Interface Types
text box.

Click the Configure button. Set the Default Protocol to AUTO.
Click OK to use the default settings.
Click OK to exit the I0 Config program.

VISA Assistant

VISA is an industry standard IO library API. It allows the user to send SCPI commands to
instruments and to read instrument data in a variety of formats. You can use the VISA Assistant,
available with the Agilent 10 Libraries versions M and earlier, to send commands to the signal
generator. If the interface you want to use does not appear in the VISA Assistant then you must
manually configure the interface. See the Manual VISA Configuration section below. Refer to the VISA
Assistant Help menu and the Agilent VISA User’s Manual (available on Agilent’s website) for more
information.

VISA Configuration (Automatic)
1. Run the VISA Assistant program.

2. Click on the interface you want to use for sending commands to the signal generator.
3. Click the Formatted 1/0 tab.
4. Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the ViPrintf button.

Agilent E8663B Analog Signal Generator Programming Guide 5

Getting Started with Remote Operation
10 Libraries and Programming Languages

VISA Configuration (Manual)

Perform the following steps to use 10 Config and VISA to manually configure an interface.
1. Run the 10 Config Program.

2. Click on GPIB in the Available Interface Types text box.

3. Click the Configure button. Set the Default Protocol to AUTO and then Click OK to use the default
settings.

Click on GPIBO in the Configured Interfaces text box.
Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the GPIB address of the signal generator.

© © N s ok

Click the OK button in this form and all other forms to exit the IO Config program.

Select |0 Libraries for GPIB

The IO libraries are included with the GPIB interface card, and can be downloaded from the National
Instruments website or the Agilent website. See also, “IO Libraries and Programming Languages” on
page 4 for information on IO libraries. The following is a discussion on these libraries.

VISA VISA is an IO library used to develop 10 applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used
for programming the signal generator. The NI-VISA[and Agilent VISA libraries
are similar implementations of VISA and have the same commands, syntax, and
functions. The differences are in the lower level 10 libraries; NI-488.2 and SICL
respectively. It is best to use the Agilent VISA library with the Agilent GPIB

interface card or NI-VISA with the NI PCI-GPIB interface card.!

SICL Agilent SICL can be used without the VISA overlay. The SICL functions can be
called from a program. However, if this method is used, executable programs will
not be portable to other hardware platforms. For example, a program using SICL
functions will not run on a computer with NI libraries (PCI-GPIB interface card).

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

NI-488.2 NI-488.2 can be used without the VISA overlay. The NI-488.2 functions can be
called from a program. However, if this method is used, executable programs will
not be portable to other hardware platforms. For example, a program using
NI-488.2 functions will not run on a computer with Agilent SICL (Agilent GPIB
interface card).

1. NI-VISA is a registered trademark of National Instruments Corporation

6 Agilent E8663B Analog Signal Generator Programming Guide

Getting Started with Remote Operation
10 Libraries and Programming Languages

Selecting IO Libraries for LAN

The TELNET and FTP protocols do not require IO libraries to be installed on your computer.
However, to write programs to control your signal generator, an IO library must be installed on your
computer and the computer configured for instrument control using the LAN interface.

The Agilent IO libraries Suite is available on the Automation-Ready CD, which was shipped with your
signal generator. The libraries can also be downloaded from the Agilent website. The following is a
discussion on these libraries.

Agilent VISA VISA is an IO library used to develop IO applications and instrument drivers that
comply with industry standards. Use the Agilent VISA library for programming the
signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent VISA.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

Programming Languages

Along with Standard Commands for Programming Instructions (SCPI) and IO library functions, you
use a programming language to remotely control the signal generator. Common programming
languages include:

e (C/C++

e C#

* MATLAB® (MATLAB is a registered trademark of The MathWorks.)
« HP Basic

¢ LabView

e Javall (Java is a U.S. trademark of Sun Microsystems, Inc.)

« Visual Basic’ (Visual Basic is a registered trademark of Microsoft Corporation.)
¢ PERL

Agilent E8663B Analog Signal Generator Programming Guide 7

Getting Started with Remote Operation
Using the Web Browser

Using the Web Browser

The signal generator can be used as a Web
Server. The signal generator can function
as a Web Server using a client/server
model where the client is the web browser
on your PC or workstation and the server
is the signal generator. When you enable
the Web Server, you can access a web page
that resides on the signal generator.

The web-enabled signal generator web
page, shown at right and page 10, provides
general information on the signal
generator, FTP access to files stored on the
signal generator, and a means to control
the instrument using either a remote
front- panel interface or SCPI commands.
The web page also has links to Agilent’s
products, support, manuals, and website.

The Web Server service is compatible with
the Microsoft© Internet Explorer (6.0 and
newer) web browser and operating systems
Windows 2000. Windows XP and newer.
For more information on using the signal
generator as a Web Server, refer to
“Enabling the Signal Generator Web
Server” on page 9.

Agilent Tech

SICL Interface Name: apibd
GPIB Address: 19

Use the navigation bar on the lefto access your signal generator and related information

Welcome to your

Information about this Web-Enabled ES663B:

Serial Number: 00000000144
VISA TCPIP Comnect String: QU= ERIEI]

Mnother web-enabled

nologies fram gt T

E8663B Analog Signal Generator

Web-Enabled E8663B

Agilent E86638
E86638
1P Address: 14112188140

©.04.70.5008

'SCPI TCPIP Socket Port: 5025

©Agient Technologies, Inc. 2006

To operate the signal generator, either click keys, or
enter SCPI commands and click SEND.

FREQUENCY.

3.20000

APLITUOE

-20.00 @n

Mr Options Infol

Disgnostic Infor|

0'8Q0 000 &=

self Test

Hod Status Infa

Tnstalled,|
BoBrd Info

04/17/2006 10:48

LN

SCPI command [*RSTI

The results of a SCPI command display on a separate web page titled,
“SCPI Command Processed.” You can continue using this web page to enter
SCPI commands or you can return to the front panel web page. If the web
page does not update, use the Web browser Refresh function.

Agilent E8663B Analog Signal Generator Programming Guide

Getting Started with Remote Operation
Using the Web Browser

Enabling the Signal Generator Web Server
1. If it is not already enabled, turn on the Web server: Refer to “E8663B Web Server On” on page 9.

E8663B Web Server On
Utility If necessary toggle Web Server On
Off to On.
Confirm Chanoe
A "““reig FTP Seruen Instrument.
Will Reboot)
Femote Language
(SCPT Her
o Sockets SCRPI
RS-232 Setupk OiF
WXI-11 SCPI
LAN Setupk OFF
LAM Services
Setup*f— %

Proceed With,
Reconf iourat ion

For details on each key, use the Key Reference.

Launch the PC or workstation web browser.

3. In the web browser address field, enter the signal generator’s IP address. For example,
http:;//101.101.101.101 (where 101.101.101.101 is the signal generator’s IP address).

The IP (internet protocol) address can change depending on the LAN configuration (see “Using
LAN” on page 22).

Agilent E8663B Analog Signal Generator Programming Guide 9

Getting Started with Remote Operation
Using the Web Browser

4. On the computer’s keyboard, press Enter. The web browser displays the signal generator’s

homepage.

Click the Signal Generator Web Control menu button on the left of the page. The front panel web

page displays.

To control the signal generator, either
click the front panel keys or enter SCPI
commands.

Agilent Technologies E8663B Analog Signal Generator
Py Welcome to your
£ e
Web-Enabled E8663B
G
]
Por o G| Information about this Web-Enabled E86638:
L Jriaceess
= Cr——
Tenet
EE CErmmm -

E86638

12t 14s
e
B

o

50 onthe leftto

© Agient Technologies, Inc. 2006

able
nt Technolog

A nstrumer
s

The FTP access softkey opens to show the folders containing the
signal generator’s memory catalog files.

\
@flp:ﬂpsg-anﬁﬁl - Microsoft Internet Explorer provided by Agileni Technologies, Inc. E
Fle Edt Wew Favortes Tools Help
Q- © - F| Pt e | [
Address | (S0 fEpifjpsaranssi B ks
Dhcrphss B LsT STATE UPOWCORR USERFLAT

a Inkernet Explorer
(Y My Documents
\3 My Mebwork Flaces

O T

10

Agilent E8663B Analog Signal Generator Programming Guide

Getting Started with Remote Operation
Preferences

Preferences

The following commonly used manual command sections are included here:
“Configuring the Display for Remote Command Setups” on page 12
“Setting the Help Mode” on page 12

Agilent E8663B Analog Signal Generator Programming Guide 11

Getting Started with Remote Operation
Preferences

Configuring the Display for Remote Command Setups

'HIIIIiI'

| Instrument Info/,|
Help M

Errar, |
Info

GFIB/RS-232)
LAk

Instrument
Adjustments

Displau

Fower 0n/|
Freset

Memory Catalog

ode

For details on each key, use the Key Reference.

Setting the Help Mode

'Hiﬁiil'

1 Instrument
Heli

Errar, |
Info

GFIB/RS-232)
LAk

Instrument
Adjustments

Displau

Fower 0n/|
Freset

Memory Catalog

Infa/

Erightness
g0

Screen Saver
| Off]

Screen Saver Mode
(Light Onlu)

Screen

Sawver
Delau: 1 hr

Inverse Wideo
I On

Update in Remote
0ff Il

More
(1 of 23

SCPI commands:
: DI SPI ay: REMbt e ON| OFF| 1| 0
: DI SPl ay: REMbt e?

<« Select Update in Remote until On is highlighted.

Dimgnostic
Options

Self

Mod Status
of

Eoard

p Mode”

Y

f I

Installed,

Infom

Infom

Testy

Info

Info

For details on each key, use the Key Reference.

SCPI commands:
: SYSTem HELP: MODE SI NG e
: SYSTem HELP: MODE?

When you press Help:

Single: Help displays only for the next key you press.

Helpcgﬁge‘/Cont: Help displays for each key you press and that key’s function activates.

To turn off the function, press Help.

12

Agilent E8663B Analog Signal Generator Programming Guide

Getting Started with Remote Operation
Error Messages

Error Messages

If an error condition occurs in the signal generator, it is reported to both the SCPI (remote interface)
error queue and the front panel display error queue. These two queues are viewed and managed
separately; for information on the front panel display error queue, refer to the User’s Guide.

NOTE For additional general information on troubleshooting problems with your connections, refer
to the Help in the Agilent 10 Libraries and documentation.

When accessing error messages using the SCPI (remote interface) error queue, the error numbers and
the <error_description> portions of the error query response are displayed on the host terminal.

Characteristic SCPI Remote Interface Error Queue

Capacity (#errors) 30

Linear, first-in/first- out.

Overflow Handling Replaces newest error with: - 350, Queue overfl ow

Viewing Entries Use SCPI query SYSTem ERRor [: NEXT] ?
Power up
Clearing the Queue Send a *CLS command

Read last item in the queue

Unresolved Errors® Re-reported after queue is cleared.

When the queue is empty (every error in the queue has been read, or the queue is cleared), the
No Errors following message appears in the queue:
+0, "No error"

a.Errors that must be resolved. For example, unlock.

Error Message File

A complete list of error messages is provided in the file errormessages.pdf, on the CD-ROM supplied
with your instrument. In the error message list, an explanation is generally included with each error
to further clarify its meaning. The error messages are listed numerically. In cases where there are
multiple listings for the same error number, the messages are in alphabetical order.

Agilent E8663B Analog Signal Generator Programming Guide 13

Getting Started with Remote Operation
Error Messages

Error Message Types

Events do not generate more than one type of error. For example, an event that generates a query
error will not generate a device- specific, execution, or command error.

Query Errors (-499 to -400) indicate that the instrument’s output queue control has detected a
problem with the message exchange protocol described in IEEE 488.2, Chapter 6. Errors in this class
set the query error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1). These errors
correspond to message exchange protocol errors described in IEEE 488.2, 6.5. In this case:

¢ Either an attempt is being made to read data from the output queue when no output is either
present or pending, or

¢ data in the output queue has been lost.

Device Specific Errors (-399 to -300, 201 to 703, and 800 to 810) indicate that a device operation
did not properly complete, possibly due to an abnormal hardware or firmware condition. These codes
are also used for self-test response errors. Errors in this class set the device-specific error bit (bit 3)
in the event status register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A positive error indicates that
the instrument detected an error within the GPIB system, within the instrument’s firmware or
hardware, during the transfer of block data, or during calibration.

Execution Errors (-299 to -200) indicate that an error has been detected by the instrument’s
execution control block. Errors in this class set the execution error bit (bit 4) in the event status
register (IEEE 488.2, section 11.5.1). In this case:

¢ Either a <PROGRAM DATA> element following a header was evaluated by the device as outside of
its legal input range or is otherwise inconsistent with the device’s capabilities, or

e a valid program message could not be properly executed due to some device condition.

Execution errors are reported after rounding and expression evaluation operations are completed.
Rounding a numeric data element, for example, is not reported as an execution error.

Command Errors (-199 to -100) indicate that the instrument’s parser detected an IEEE 488.2
syntax error. Errors in this class set the command error bit (bit 5) in the event status register (IEEE
488.2, section 11.5.1). In this case:

¢ Either an IEEE 488.2 syntax error has been detected by the parser (a control-to-device message
was received that is in violation of the IEEE 488.2 standard. Possible violations include a data
element that violates device listening formats or whose type is unacceptable to the device.), or

¢ an unrecognized header was received. These include incorrect device-specific headers and
incorrect or unimplemented IEEE 488.2 common commands.

14 Agilent E8663B Analog Signal Generator Programming Guide

2 Using 10 Interfaces

Using the programming examples with GPIB, LAN, and RS232 interfaces:
e “Using GPIB” on page 16

* “Using LAN” on page 22

¢ “Using RS-232" on page 38

Agilent E8663B Analog Signal Generator Programming Guide

15

Using 10 Interfaces
Using GPIB

Using GPIB

GPIB enables instruments to be connected together and controlled by a computer. GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card or NI-GPIB interface
card for your PC or UNIX-based system.

¢ “Installing the GPIB Interface” on page 16
¢ “Set Up the GPIB Interface” on page 18
¢ “Verify GPIB Functionality” on page 18

Installing the GPIB Interface

NOTE You can also connect GPIB instruments to a PC LAN port using the Agilent 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card. For more
information, refer to table on page 16 or go to http.//www.agilent.com/find/gpib.

A GPIB interface card must be installed in the computer. Two common GPIB interface cards are the
National Instruments (NI) PCI-GPIB card and the Agilent GPIB interface card. Follow the interface
card instructions for installing and configuring the card. The following table provide lists on some of
the available interface cards. Also, see the Agilent website, http://www.agilent.com for details on
GPIB interface cards.

Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Type System BUS (kB/sec)

Agilent USB/GPIB Interface Converter for PC-Based Systems

Agilent 82357A Windows?® VISA / SICL | C/C++, Visual ISA/EISA, 850 Built-in
Converter 98 SE/ME/ Basic, Agilent 16 bit
20009/ XP VEE, HP Basic for
Windows, NI
Labview

Agilent GPIB Interface Card for PC-Based Systems

Agilent 82341C Windows? VISA / SICL | C/C++, Visual ISA/EISA, 750 Built-in
for ISA bus 95/98/NT Basic, Agilent 16 bit
computers ® VEE, HP Basic for
/2000 Windows
Agilent 82341D Windows VISA / SICL C/C++, Visual ISA/EISA, 750 Built-in
Plug&Play for 95 Basic, Agilent 16 bit
PC VEE, HP Basic for
Windows
Agilent 82350A Windows VISA / SICL | C/C++, Visual PCI 32 bit 750 Built-in
for PCI bus 95/98/NT Basic, Agilent
computers /2000 VEE, HP Basic for
Windows

16 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces

Using GPIB
Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Type System BUS (kB/sec)
Agilent USB/GPIB Interface Converter for PC-Based Systems
Agilent 82350B Windows VISA / SICL | C/C++, Visual PCI 32 bit > 900 Built-in
for PCI bus 98(SE)/ME/2000 Basic, Agilent
computers /XP VEE, HP Basic for
Windows
NI- GPIB Interface Card for PC-Based Systems
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments 95/98/2000/ NI-488.2[1¢ Visual BASIC,
PCI-GPIB ME/NT LabView
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments NT NI-488.2 Visual BASIC,
PCI-GPIB+ LabView
Agilent- GPIB Interface Card for HP-UX Workstations
Agilent E2071C HP-UX 9x, VISA/SICL ANSI C, EISA 750 Built-in
HP-UX 10.01 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2071D | HP-UX 10.20 VISA/SICL ANSI C, EISA 750 Built-in
Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2078A HP-UX 10.20 VISA/SICL ANSI C, PCI 750 Built-in
Agilent VEE,
Agilent BASIC,
HP-UX
a.Windows 95, 98, NT, 2000 and XP are registered trademarks of Microsoft Corporation
b.Windows 95, 98, NT, 2000 and XP are registered trademarks of Microsoft Corporation
¢.NI-488.2 is a trademark of National Instruments Corporation
Agilent E8663B Analog Signal Generator Programming Guide 17

Using 10 Interfaces
Using GPIB

Set Up the GPIB Interface

Figure 2-1 Setting the GPIB Address on the E8663B

SCPI commands:
: SYSTem COMMuNI cat e: GPI B: ADDRess <nunber >
: SYSTem COMWMUNI cat e: GPl B: ADDRess?

\J

Enter

Ertror GPIE Address
i []

= Femote Language
GPIE/RS Egﬁ. 2B,

FI)
Instrument o
adjustments® R5-232 Setupk I
Default address: 19
Displauk LAN Setupk Range: 0-30
Power On LAM Services
Prese{' Setup®

Natnty, |

Memory Catalog

Instrument Info/|
Help Mode

For details on each key, use the Key Reference. For information describing the key help, refer to the User’s Guide.

Connect a GPIB interface cable between the signal generator and the computer. (The following table
lists cable part numbers.)

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters

Verify GPIB Functionality

To verify GPIB functionality, use the VISA Assistant, available with the Agilent IO Library or the
Getting Started Wizard available with the National Instrument IO Library. These utility programs
enable you to communicate with the signal generator and verify its operation over GPIB. For
information and instructions on running these programs, refer to the Help menu available in each
utility.

If You Have Problems

1. Verify that the signal generator’s address matches the address declared in the program (example
programs in Chapter 2 use address 19).

Remove all other instruments connected via GPIB and rerun the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured
for your PC.

18 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using GPIB

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker, or controller,
depending on its current function in the network.

listener A listener is a device capable of receiving data or commands from other
instruments. Several instruments in the GPIB network can be listeners
simultaneously.

talker A talker is a device capable of transmitting data. To avoid confusion, a GPIB
system allows only one device at a time to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including
itself) for an information transfer. Only one device at a time can be an active
controller.

Agilent E8663B Analog Signal Generator Programming Guide 19

Using 10 Interfaces
GPIB Programming Interface Examples

GPIB Programming Interface Examples

¢ “Interface Check using HP Basic and GPIB” on page 20
¢ “Interface Check Using NI-488.2 and C++” on page 20

Before Using the GPIB Examples

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

If the Agilent GPIB interface card is used, the Agilent VISA library should be installed along with
Agilent SICL. If the National Instruments PCI- GPIB interface card is used, the NI-VISA library along
with the NI-488.2 library should be installed. Refer to “Select 10 Libraries for GPIB” on page 6 and
the documentation for your GPIB interface card for details.

HP Basic addresses the signal generator at 719. The GPIB card is addressed at 7 and the signal
generator at 19. The GPIB address designator for other libraries is typically GPIBO or GPIBI1.

The following sections contain HP Basic and C++ lines of programming removed from the
programming interface examples in Chapter 3, these portions of programming demonstrate the
important features to consider when developing programming for use with the GPIB interface.

Interface Check using HP Basic and GPIB

This portion of the program from the example program “Interface Check using HP Basic and GPIB”
on page 56, causes the signal generator to perform an instrument reset. The SCPI command * RST
places the signal generator into a pre-defined state and the remote annunciator (R) appears on the
front panel display.

The following program example is available on the signal generator Documentation CD-ROM as
basicex1.txt. For the full text of this program, refer to “Interface Check using HP Basic and GPIB” on
page 56 or to the signal generator’s documentation CD-ROM.

160 Si g_gen=719 ! Declares a variable to hold the signal generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local node

180 CLEAR Sig_gen ! Clears any pending data |1/0O and resets the parser

190 REMOTE 719 ! Puts the signal generator into renote node

200 CLEAR SCREEN | Clears the controllers display

210 REMOTE 719

220 QUTPUT Sig_gen;"*RST" | Places the signal generator into a defined state

Interface Check Using NI-488.2 and C++

This portion of the program from the example program “Interface Check Using NI-488.2 and C++” on
page 57, uses the NI-488.2 library to verify that the GPIB connections and interface are functional.

The following program example is available on the signal generator Documentation CD-ROM as
ni ex1. cpp. For the full text of this program, refer to “Interface Check Using NI-488.2 and C++” on
page 57 or to the signal generator’s documentation CD-ROM.

20 Agilent E8663B Analog Signal Generator Programming Guide

#i ncl ude "stdafx. h"

#i ncl ude <i ostrean»
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"
usi ng namespace std;

int GPlBO= 0; /1 Board handl e

Using 10 Interfaces
GPIB Programming Interface Examples

Addr 4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{
int sig; 11
sig = ibdev(0, 19, 0, 13, 1, 0); //
ibclr(sig); I
ibwt(sig, "*RST", 4); 11

Decl ares a device descriptor variable

Aquires a device descriptor

Sends device clear nessage to signal generator
Pl aces the signal generator into a defined state

Agilent E8663B Analog Signal Generator Programming Guide 21

Using 10 Interfaces
Using LAN

Using LAN

The signal generator can be remotely programmed via a 10Base-T LAN interface and LAN-connected
computer using one of several LAN interface protocols. The LAN allows instruments to be connected
together and controlled by a LAN-based computer. LAN and its associated interface operations are
defined in the IEEE 802.2 standard. For more information refer to http://www.ieee.org.

NOTE For more information on configuring your signal generator for LAN, refer to the User’s Guide
for your signal generator.

The signal generator supports the following LAN interface protocols:

e VXI-11 (See page 30)

* Sockets LAN (See page 31)

¢ Telephone Network (TELNET) (See page 32)
¢ File Transfer Protocol (FTP) (See page 36)

VXI-11 and sockets LAN are used for general programming using the LAN interface, TELNET is used
for interactive, one command at a time instrument control, and FTP is for file transfer.

NOTE For more information on configuring the signal generator to communicate over the LAN,
refer to “Using VXI-11” on page 30.

The following sections contain information on selecting and connecting IO libraries and LAN interface
hardware that are required to remotely program the signal generator via LAN to a LAN-based
computer and combining those choices with one of several possible LAN interface protocols.

e “Setting Up the LAN Interface” on page 23
e “Verifying LAN Functionality” on page 26

22 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using LAN

Setting Up the LAN Interface

For LAN operation, the signal generator must be connected to the LAN, and an IP address must be
assigned to the signal generator either manually or by using DHCP client service. Your system
administrator can tell you which method to use.

NOTE Verify that the signal generator is connected to the 10Base-T LAN cable. For more
information on 10Base-T LAN, refer to “Using LAN” on page 22.

Configuring the VXI-11 for LAN

E,tﬁill\ilty > GPIB/RS-232 __ | Femte Langg%' uegFge
RS-232 Setup Sockete

LAN Satups o

—

LAN Services,
Setup

Natnty, |

Proceed| Uith,
Reconf iourat ion

NOTE
To communicate with the signal generator over the LAN, you must enable the VXI-11 SCPI service. Select VXI-11 until On is highlighted.

(Default condition is On.)

Use a 10Base-T LAN cable to connect the signal generator to the LAN. For more information refer to http://www.ieee.org.

Manual Configuration
The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.

To remotely access the signal generator from a different LAN subnet, you must also enter the subnet
mask and default gateway. See your system administrator for more information.

For more information on the manual configuration, refer to “Manually Configuring the ES8663B LAN”
on page 24.

Agilent E8663B Analog Signal Generator Programming Guide 23

Using 10 Interfaces
Using LAN

Manually Configuring the E8663B LAN

The Hostname softkey is available only when LAN config Manual DHCP is set to

Utility > 10 Config
Manual.

Your hostname can be up to 20 char

GPIB Address

19
Remote Language,
(5CPI

RS-232 Setupk

LAN Setupk

LAN Services,
Setup

Natnty, |

Hostname
COBRALPL

IF Address
141,121.60.53

Subnet. Mask

Default Gatewad

Config
OHCP

Proceed Hith
Reconf iourat ion

/
/
A

Confirm Chanoe
(Instrument”
Will Hebogt)

Manual or when AUTO (DHCP) is unable to connect automatically and defaults to

SCPI conmmands:
: SYSTem COMMuNIi cat e: LAN: CONFi g MANual
: SYSTem COMMuNIi cat e: LAN: CONFi g?

For details on each key, use the Key Reference.

24

Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using LAN

DHCP Configuration

If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address, the
hostname may be used in place of the IP address. Otherwise, the hostname is not usable.

For more information on the DHCP configuration, refer to “Configuring the DHCP LAN” on page 25.

Configuring the DHCP LAN
Utility
Error — Confirm Chanoe
Info® A “““reig EBSEEEE‘% (Instrument
Will Reboot)
6PIB/RS-232, 0 o | Remote L IF_Address
CANMPP-| MEMOLE LANSHE0S, 141.121.60.53

Instrument MM
adjustments® FS-232 SetupM Subnet. Mask

Default Gatewad

Displau LAN Setupw
Power On/ i
Freset? LAN Ser‘gégﬁg,
Memory Catalogk \N‘\M_ > ﬂan
| Instrument Info/, Proceed Lith,
Help Mode Reconf igdrat ion

DHCP: Request a new IP address from the DHCP server each poy(er NOTE

cycle. Use a 10Base-T LAN cable to connect the signal generator to
Confirming this action configures the signal generator as a DHCP client. the LAN.

In DHCP mode, the signal generator will request a new IP address from

the DHCP server upon rebooting to determine the assigned IP address.

SCPI commands:
: SYSTem COMMuni cat e: LAN: CONFi g DHCP
: SYSTem COMMuNI cat e: LAN: CONFi g?

For details on each key, use the Key Reference.

Agilent E8663B Analog Signal Generator Programming Guide 25

Using 10 Interfaces
Using LAN

Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file server
using the ping utility. Compare your ping response to those described in Table 2-1 on page 27.

NOTE For additional information on troubleshooting your LAN connection, refer to the Help in the
Agilent 10 Libraries and documentation for LAN connections and problems.

From a UNIX® workstation, type (UNIX is a registered trademark of the Open Group):
pi ng <hostnare or | P address> 64 10

where <host nane or | P address> is your instrument’s name or IP address, 64 is the packet size,
and 10 is the number of packets transmitted. Type man pi ng at the UNIX prompt for details on the
ping command.

From the MS-DOS” Command Prompt or Windows environment, type:1
ping -n 10 <hostname or |P address>

where <host nane or | P address> is your instrument’s name or IP address and 10 is the number of
echo requests. Type pi ng at the command prompt for details on the ping command.

NOTE In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname with the
assigned IP address, the hostname may be used in place of the IP address. Otherwise, the
hostname is not usable and you must use the IP address to communicate with the signal
generator over the LAN.

For additional information on troubleshooting your LAN connection, refer to the Help in the
Agilent 10 Libraries and documentation for LAN connections and problems.

1. MS-DOS is a registered trademark of Microsoft Corporation

26 Agilent E8663B Analog Signal Generator Programming Guide

Table 2-1 Ping Responses

Using 10 Interfaces
Using LAN

Normal Response for UNIX

A normal response to the ping command will be a total of 9 or 10 packets received with a
minimal average round-trip time. The minimal average will be different from network to
network. LAN traffic will cause the round-trip time to vary widely.

Normal Response for DOS or
Windows

A normal response to the ping command will be a total of 9 or 10 packets received if 10 echo
requests were specified.

Error Messages

If error messages appear, then check the command syntax before continuing with
troubleshooting. If the syntax is correct, resolve the error messages using your network
documentation or by consulting your network administrator.

If an unknown host error message appears, try using the IP address instead of the hostname.
Also, verify that the host name and IP address for the signal generator have been registered
by your IT administrator.

Check that the hostname and IP address are correctly entered in the node names database. To
do this, enter the nsl ookup <host nane> command from the command prompt.

No Response

If there is no response from a ping, no packets were received. Check that the typed address
or hostname matches the IP address or hostname assigned to the signal generator in the
System LAN Setup menu. For more information, refer to “Configuring the DHCP LAN” on
page 25.

Ping each node along the route between your workstation and the signal generator, starting

with your workstation. If a node doesn’t respond, contact your IT administrator.

If the signal generator still does not respond to ping, you should suspect a hardware problem.

® Check the signal generator LAN connector lights
® Verify the hostname is not being used with DHCP addressing

Intermittent Response

If you received 1 to 8 packets back, there maybe a problem with the network. In networks
with switches and bridges, the first few pings may be lost until these devices ‘learn’ the
location of hosts. Also, because the number of packets received depends on your network
traffic and integrity, the number might be different for your network. Problems of this nature
are best resolved by your IT department.

Using Interactive 10

Use the VISA Assistant utility available in the Agilent IO Libraries Suite to verify instrument
communication over the LAN interface. Refer to the section on the “IO Libraries and Programming
Languages” on page 4 for more information.

The Agilent I0 Libraries Suite is supported on all platforms except Windows NT. If you are using
Windows NT, refer to section below on using the VISA Assistant to verify LAN communication. See
the section on “Windows NT and Agilent 10 Libraries M (and Earlier)” on page 5 for more

information.

NOTE The following sections are specific to Agilent 10 Libraries versions M and earlier and apply
only to the Windows NT platform.

Agilent E8663B Analog Signal Generator Programming Guide

27

Using 10 Interfaces
Using LAN

Using VISA Assistant

Use the VISA Assistant, available with the Agilent I0 Library versions M and earlier, to communicate
with the signal generator over the LAN interface. However, you must manually configure the VISA
LAN client. Refer to the Help menu for instructions on configuring and running the VISA Assistant
program.

Run the I0 Config program.

Click on TCPIPO in the Available Interface Types text box.

Click the Configure button. Then Click OK to use the default settings.

Click on TCPIPO in the Configured Interfaces text box.

Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the TCPIP address of the signal generator. Leave the Device text box empty.

© 0 NS Ok W

Click the OK button in this form and all subsequent forms to exit the I0 Config program.

If You Have Problems
1. Verify the signal generator’s IP address is valid and that no other instrument is using the IP
address.

2. Switch between manual LAN configuration and DHCP using the front- panel LAN Config softkey and
run the ping program using the different IP addresses.

NOTE For Agilent 10 Libraries versions M and earlier, you must manually configure the VISA LAN
client in the IO Config program if you want to use the VISA Assistant to verify LAN
configuration. Refer to the I0 Libraries Installation Guide for information on configuring 10
interfaces. The I0 Config program interface is shown in Figure 2-3 on page 31.

28 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-2 10 Config Form (Windows NT)

nterface Descriptiol

*R5-232 COM Ports

W54 LaM Client (2.9, E5810]
“82350 PCI GPIB Card
82341 154 GPIB Card

82357 USE to GPIB

WISA LaN Client (2.0, ESS10)
GPIB %<l Command Module
“LAMN Client [LAM Instruments
*USE Instruments

WISA LaN Client for USE
*E8491 [EEE-1394 to il
LAM Server [PC as Server]

Check to see that the Default Protocol is set to Automatic.
1. Run the IO Config program

2. Click on TCPIP in the Configured Interfaces text box. If there is no TCPIPO in the box, follow the
steps shown in the section “Using VISA Assistant” on page 28

3. Click the Edit button.
Click the radio button for AUTO (automatically detect protocol).
Click OK, OK to end the IO Config program.

Agilent E8663B Analog Signal Generator Programming Guide 29

Using 10 Interfaces
Using LAN

Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-11 standard. VXI-11 is
an instrument control protocol based on Open Network Computing/Remote Procedure Call (ONC/RPC)
interfaces running over TCP/IP. It is intended to provide GBIB capabilities such as SRQ (Service
Request), status byte reading, and DCAS (Device Clear State) over a LAN interface. This protocol is a
good choice for migrating from GPIB to LAN as it has full Agilent VISA/SICL support.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

Configuring for VXI-11

The Agilent IO library has a program, I0 Config, that is used to setup the computer/signal generator
interface for the VXI-11 protocol. Download the latest version of the Agilent 10 library from the
Agilent website. Refer to the Agilent 10 library user manual, documentation, and Help menu for
information on running the I0 Config program and configuring the VXI-11 interface.

Use the 10 Config program to configure the LAN client. Once the computer is configured for a LAN
client, you can use the VXI-11 protocol and the VISA library to send SCPI commands to the signal
generator over the LAN interface. Example programs for this protocol are included in “LAN
Programming Interface Examples” on page 87 of this programming guide.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the DHCP LAN” on
page 25.

If you are using the Windows NT platform, refer to “Windows NT and Agilent 10 Libraries M
(and Earlier)” on page 5 for information on using Agilent 10 Libraries versions M or earlier
to configure the interface.

For Agilent IO library version J.01.0100, the “Identify devices at run-time” check box must be
unchecked. Refer to Figure 2-3.

30 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-3 Show Devices Form (Agilent IO Library version J.01.0100)

Show Devices |
_ (]
[ddentify devices at run-time
Cancel
Devices prezent on interface GPIET:
Add device

Bemove device

Auto Add devices

Using Sockets LAN

NOTE Windows XP operating systems and newer can use this section to better understand how to
use the signal generator with port settings. For more information, refer to the help software
of the IO libraries being used.

Sockets LAN is a method used to communicate with the signal generator over the LAN interface
using the Transmission Control Protocol/Internet Protocol (TCP/IP). A socket is a fundamental
technology used for computer networking and allows applications to communicate using standard
mechanisms built into network hardware and operating systems. The method accesses a port on the
signal generator from which bidirectional communication with a network computer can be
established.

Sockets LAN can be described as an internet address that combines Internet Protocol (IP) with a
device port number and represents a single connection between two pieces of software. The socket
can be accessed using code libraries packaged with the computer operating system. Two common
versions of socket libraries are the Berkeley Sockets Library for UNIX systems and Winsock for
Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is
compatible with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The signal
generator is also compatible with other standard sockets APIs. The signal generator can be controlled
using SCPI commands that are output to a socket connection established in your program.

Agilent E8663B Analog Signal Generator Programming Guide 31

Using 10 Interfaces
Using LAN

Before you can use sockets LAN, you must select the signal generator’s sockets port number to use:

¢ Standard mode. Available on port 5025. Use this port for simple programming.
¢ TELNET mode. The telnet SCPI service is available on port 5023.

NOTE On the E8663B, the signal generator will accept references to telnet SCPI service at port
7777 and sockets SCPI service at port 7778.

An example using sockets LAN is given in “LAN Programming Interface Examples” on page 87 of this
programming guide.

Using Telnet LAN

Telnet provides a means of communicating with the signal generator over the LAN. The Telnet client,
run on a LAN connected computer, will create a login session on the signal generator. A connection,
established between computer and signal generator, generates a user interface display screen with
SCPI > prompts on the command line.

Using the Telnet protocol to send commands to the signal generator is similar to communicating with
the signal generator over GPIB. You establish a connection with the signal generator and then send
or receive information using SCPI commands. Communication is interactive: one command at a time.

NOTE The Windows 20001 operating systems use a command prompt style interface for the Telnet
client. Refer to the Figure 2-6 on page 35 for an example of this interface.

Windows XP operating systems and newer can use this section to better understand how to
use the signal generator with port settings. For more information, refer to the help software
of the IO libraries being used.

The following telnet LAN connections are discussed:

¢ “Using Telnet and MS-DOS Command Prompt” on page 32

¢ “Using Telnet On a PC With a Host/Port Setting Menu GUI” on page 33
¢ “Using Telnet On Windows 2000” on page 34

¢ “The Standard UNIX Telnet Command” on page 35

A Telnet example is provided in “Unix Telnet Example” on page 35.

Using Telnet and MS-DOS Command Prompt
1. On your PC, click Start > Programs > Command Prompt.

2. At the command prompt, type in t el net.

1. Windows 2000 is a registered trademark of Microsoft Corporation.

32 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using LAN

3. Press the Enter key. The Telnet display screen will be displayed.
4. Click on the Connect menu then select Remote System. A connection form (Figure 2-4) is displayed.

Figure 2-4Connect Form (Agilent 10 Library version J.01.0100)

Host Name: |Instrumenl name j

Port: |5[|23 E|

TermType: Im vl
Connect | Cancel |

5. Enter the hostname, port number, and TermType then click Connect.

e Host Name—-IP address or hostname
¢ Port-5023
e Term Type—vt100

6. At the SCPI > prompt, enter SCPI commands. Refer to Figure 2-5 on page 34.
To signal device clear, press Ctrl-C on your keyboard.

8. Select Exit from the Connect menu and type exit at the command prompt to end the Telnet
session.

Using Telnet On a PC With a Host/Port Setting Menu GUI
1. On your PC, click Start > Run.

2. Type t el net then click the OK button. The Telnet connection screen will be displayed.

3. Click on the Connect menu then select Remote System. A connection form is displayed. See Figure
2-4.

4. Enter the hostname, port number, and TermType then click Connect.

¢ Host Name-signal generator’s IP address or hostname
* Port-5023
e Term Type—vt100

At the SCPI > prompt, enter SCPI commands. Refer to Figure 2-5 on page 34.
To signal device clear, press Ctrl-C.

Select Exit from the Connect menu to end the Telnet session.

Agilent E8663B Analog Signal Generator Programming Guide 33

Using 10 Interfaces
Using LAN

Figure 2-5 Telnet Window (Windows 2000)

% Telnet - lpvipl

LConnect Edit Teminal Help

Agilent Technologies, E8254A SN-USG0000064
Firmware: Har 28 2081 11:23:18

Hostname: 88081p1

IP : 000 .500.00.000

SCPI> =IDN?
Agilent Technologies, E8254A, USOE088064, C.01.00
SCPI> =RST

SCPI> POW:AMPL -18 dbm

SCPI> POW?

-1.800008006E+ 081

scp1> i

Using Telnet On Windows 2000
1. On your PC, click Start > Run.

2. Type t el net in the run text box, then click the OK button. The Telnet connection screen will be
displayed. See Figure 2-6 on page 35 (Windows 2000).

Type open at the prompt and then press the Enter key. The prompt will change to (t 0).

At the (t 0) prompt, enter the signal generator’s IP address followed by a space and 5023, which
is the Telnet port associated with the signal generator.

5. At the SCPI > prompt, enter SCPI commands. Refer to commands shown in Figure 2-5 on

page 34.
6. To escape from the SCPI> session type Ctrl-].
Type quit at the prompt to end the Telnet session.

34

Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-6 Telnet 2000 Window

;’ C:\WINNT \system32'\telnet.exe

Microsoft (R> Windows 2888 (TI"I). Uersion 5.88 (Build 2195%>
Welcome to Microsoft Telnet Client
Telnet Client Build 5.8@8.99286.1

Ezcape Character iz ‘CTRL+1’

Microsoft Telnet>

The Standard UNIX Telnet Command

Synopsis
tel net [host [port]]

Description

This command is used to communicate with another host using the Telnet protocol. When the
command t el net is invoked with host or port arguments, a connection is opened to the host, and
input is sent from the user to the host.

Options and Parameters

The command t el net operates in character-at-a-time or line-by-line mode. In line-by-line mode,
typed text is echoed to the screen. When the line is completed (by pressing the Enter key), the text
line is sent to host. In character-at-a-time mode, text is echoed to the screen and sent to host as it
is typed. At the UNIX prompt, type man tel net to view the options and parameters available with
the tel net command.

NOTE If your Telnet connection is in line-by-line mode, there is no local echo. This means you
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your Telnet connection to character-by-character mode. Escape out of Telnet, and at
the t el net > prompt, type node char. If this does not work, consult your Telnet program's
documentation.

Unix Telnet Example

To connect to the instrument with host name nyl nstrunent and port number 7778, enter the
following command on the command line: t el net nyl nstrument 5023

Agilent E8663B Analog Signal Generator Programming Guide 35

Using 10 Interfaces
Using LAN

When you connect to the signal generator, the UNIX window will display a welcome message and a
SCPI command prompt. The instrument is now ready to accept your SCPI commands. As you type
SCPI commands, query results appear on the next line. When you are done, break the Telnet
connection using an escape character. For example, G rl -] ,where the control key and the] are
pressed at the same time. The following example shows Telnet commands:

$ telnet nyinstrunent 5023

Trying. ...

Connected to signal generator

Escape character is ‘"]’

Agi | ent Technol ogi es, E44xx SN-US00000001

Fi r mrar e:

Host name: your instrunent

1P XXX, XX, XXX. XXX

SCPI >

Using FTP

FTP allows users to transfer files between the signal generator and any computer connected to the
LAN. For example, you can use FTP to download instrument screen images to a computer. When
logged onto the signal generator with the FTP command, the signal generator’s file structure can be
accessed. Figure 2-7 shows the FTP interface and lists the directories in the signal generator’s user
level directory.

NOTE File access is limited to the signal generator’s /user directory.

36 Agilent E8663B Analog Signal Generator Programming Guide

Figure 2-7 FTP Screen

Using 10 Interfaces
Using LAN

% Command Prompt - ftp 000.000.00.000
<C> Copyrights 1985-1996 Microsoft Corp.

C:\>ftp 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-US00000004
220- Firmware: Mar.28.2001 11:23:18

220- Hostname: 000lp1

220- 1P : 000.000.00.000

220- FTP server <Version 1.0> ready.

User <000.000.00.000:<none> >:

331 Password required

Password:

230 Successful login

ftp> 1s

200 Port command successful.

150 Opening data connection.

USER

226 Transfer complete.

35 bytes received in 0.00 seconds <35000.00 Kbytes/sec>
ftp> _

The following steps outline a sample FTP session from the MS-DOS Command Prompt:
1. On the PC click Start > Programs > Command Prompt.
2. At the command prompt enter:
ftp < 1P address > or < host narme >
3. At the user name prompt, press enter.
At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing hel p at the command
show you the FTP commands that are available on your system.

Type quit or bye to end your FTP session.

Type exit to end the command prompt session.

ce917a

prompt will

Agilent E8663B Analog Signal Generator Programming Guide

37

Using 10 Interfaces
Using RS-232

Using RS-232

NOTE The E8663B’s AUXILIARY INTERFACE connector is compatible with ANSI/EIA232 (RS-232) serial
connection but GPIB and LAN are recommended for making faster measurements and when
downloading files. Refer to the User’s Guide.

The RS-232 serial interface can be used to communicate with the signal generator. The RS-232
connection is standard on most PCs and can be connected to the signal generator’s rear-panel
connector using the cable described in Table 2-2 on page 40. Many functions provided by GPIB, with
the exception of indefinite blocks, parallel polling, serial polling, GET, non-SCPI remote languages,
SRQ, and remote mode are available using the RS-232 interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is slow.
The data transmitted and received is usually in ASCII format with SCPI commands being sent to the
signal generator and ASCII data returned.

The following sections contain information on selecting and connecting IO libraries and RS-232
interface hardware on the signal generator to a computer’s RS-232 connector.

¢ “Selecting 10 Libraries for RS-232” on page 38
e “Setting Up the RS-232 Interface” on page 39
¢ “Verifying RS-232 Functionality” on page 41

Selecting IO Libraries for RS-232

The IO libraries can be downloaded from the National Instrument website, http.//www.ni.com, or
Agilent’s website, http.;//www.agilent.com. The following is a discussion on these libraries.

HP Basic The HP Basic language has an extensive IO library that can be used to control the
signal generator over the RS-232 interface. This library has many low level
functions that can be used in BASIC applications to control the signal generator
over the RS-232 interface.

VISA VISA is an IO library used to develop 10 applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used
for programming the signal generator. The NI-VISA and Agilent VISA libraries are
similar implementations of VISA and have the same commands, syntax, and
functions. The differences are in the lower level IO libraries used to communicate
over the RS-232; NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 10 libraries can be used to develop applications for the RS-232 interface.
See National Instrument’s website for information on NI-488.2.

SICL Agilent SICL can be used to develop applications for the RS-232 interface. See
Agilent’s website for information on SICL.

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

38 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using RS-232

Setting Up the RS-232 Interface
1. Setting the RS-232 Interface Baud Rate

Utility

GPIB fAddress RS-232 Baud Rate
Errar, 19 (576007 HEGL
GPIB/RS-232, =TS (EpENEEEA Feset RS-232 38400
Instrument. L RS-232 Setupk RS=z32 Echo
Ad justments® n 19200
Ro_232 Ti & Select a baud
= 1menLl
Displauk LAN Setupk e | — > 9600 rate of 9600.
LAW Services
Power On/ »
Freset™ Setup gotl
Memory Catalogh 2400
Instrument. Info/ Mare
1 HeIp Mode® (1 of 23

For details on each key, refer to the Key Reference.

NOTE Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the
baud rate of your computer or UNIX workstation or adjust the baud rate settings on your
computer to match the baud rate setting of the signal generator.

The default baud rate for VISA is 9600. This baud rate can be changed with the
“VI_ATTR_ASRL_BAUD” VISA attribute.

Agilent E8663B Analog Signal Generator Programming Guide 39

Using 10 Interfaces
Using RS-232

2. Setting the RS-232 Echo Softkey

Utility

GPIB Address RS-232 Baud_Rate
Borer, 19 {575007"
- Femote Language
GPIE/RS-222, (SCPTIM Reset R5-232
e L' RS-232 Setupt—- Rsiatae L Toggle RS-232 Echo Off On until Off is
highlighted. Selecting On echoes or returns
g characters sent to the signal generator and
RS-232 Timeout "
Displau LR Sty 25 gec prints them to the display.
LAM Services
Power On/ »
Freset? Setup
Memory Catalog
For details on each key, refer to the key reference.
| Instrument Info/,|
Help Mode

3. Connect an RS-232 cable from the computer’s serial connector to the ES8663B’s AUXILIARY
INTERFACE connector. Refer to Table 2-2 for RS-232 cable information.

Table 2-2 RS-232 Serial Interface Cable

Quantity Description Agilent Part Number

1 Serial RS-232 cable 9-pin (male) to 9-pin (female) 8120-6188

NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires pins 2, 3, 5, 7,
and 8 may be used.

40 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
Using RS-232

Verifying RS-232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232 interface
functionality. To run the HyperTerminal program, connect the RS-232 cable between the computer
and the signal generator and perform the following steps:

1. On the PC click Start > Programs > Accessories > Communications > HyperTerminal.
Select HyperTerminal.

Enter a name for the session in the text box and select an icon.

Select COM1 (COM2 can be used if COM1 is unavailable).

In the COM1 (or COM2, if selected) properties, set the following parameters:

oros o

¢ Bits per second: 9600 must match signal generator’s baud rate; for more information, refer to
“Setting Up the RS-232 Interface” on page 39.

e Data bits: 8
* Parity: None
e Stop bits: 1

o Flow Control: None

NOTE Flow control, via the RTS line, is driven by the signal generator. For the purposes of this
verification, the controller (PC) can ignore this if flow control is set to None. However, to
control the signal generator programmatically or download files to the signal generator, you
must enable RTS-CTS (hardware) flow control on the controller. Note that only the RTS line
is currently used.

Go to the HyperTerminal window and select File > Properties.
Go to Settings > Emulation and select VT100.

Leave the Backscroll buffer lines set to the default value.

Go to Settings > ASCII Setup.

© ® 3>

10. Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPI command *1 DN? followed by <Ctrl j> in the
HyperTerminal window. The <Ctrl j > is the new line character (on the keyboard press the Cntrl key
and the j key simultaneously).

The signal generator should return a string similar to the following, depending on model:

Agilent Technologies <imstrument model name and number>, US40000001, C. 02. 00

Agilent E8663B Analog Signal Generator Programming Guide 41

Using 10 Interfaces
Using RS-232

Character Format Parameters

The signal generator uses the following character format parameters when communicating via RS-232:

¢ Character Length: Eight data bits are used for each character, excluding start, stop, and parity
bits.

¢ Parity Enable: Parity is disabled (absent) for each character.

e Stop Bits: One stop bit is included with each character.

If You Have Problems

1. Verify that the baud rate, parity, and stop bits are the same for the computer and signal
generator.

Verify that the RS-232 cable is identical to the cable specified in Table 2-2.

3. Verify that the application is using the correct computer COM port and that the RS-232 cable is
properly connected to that port.

4. Verify that the controller’s flow control is set to RTS-CTS.

42 Agilent E8663B Analog Signal Generator Programming Guide

Using 10 Interfaces
RS-232 Programming Interface Examples

RS-232 Programming Interface Examples

¢ “Interface Check Using HP BASIC” on page 43

¢ “Interface Check Using VISA and C” on page 43

* “Queries Using HP Basic and RS-232” on page 44

¢ “Queries for RS-232 Using VISA and C” on page 44

Before Using the Examples

Before using the examples: On the signal generator select the following settings:

¢ Baud Rate - 9600 must match computer’s baud rate
¢ RS-232 Echo - Off

The following sections contain HP Basic and C lines of programming removed from the programming
interface examples in Chapter 3, these portions of programming demonstrate the important features
to consider when developing programming for use with the RS-232 interface.

NOTE For LAN programming examples, refer to “LAN Programming Interface Examples” on
page 87.

Interface Check Using HP BASIC

This portion of the program from the example program “Interface Check Using HP BASIC” on
page 118, causes the signal generator to perform an instrument reset. The SCPI command * RST will
place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is
COM1 (Serial A on some computers). Refer to “Using RS-232” on page 38 for more information.

The following program example is available on the signal generator’s Documentation CD-ROM as
rs232ex1.txt. For the full text of this program, refer to “Interface Check Using HP BASIC” on
page 118 or to the signal generator’s documentation CD-ROM.

170 CONTROL 9,0;1 | Resets the RS-232 interface

180 CONTRCOL 9, 3; 9600 | Sets the baud rate to match the sig gen
190 STATUS 9, 4; St at ! Reads the value of register 4

200 Num=BI NAND(Stat,7) ! Gets the AND val ue

210 CONTRCL 9, 4; Num ! Sets parity to NONE

220 QUTPUT 9; "*RST" ! Qutputs reset to the sig gen

Interface Check Using VISA and C

This portion of the program from the example program “Interface Check Using VISA and C” on
page 43, uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional. In this example the COM2 port is used. The
serial port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the computer serial
port you are using.

The following program example is available on the signal generator Documentation CD-ROM as

Agilent E8663B Analog Signal Generator Programming Guide 43

Using 10 Interfaces
RS-232 Programming Interface Examples

rs232ex1.cpp. For the full text of this program, refer to “Interface Check Using VISA and C” on
page 43 or to the signal generator’s documentation CD-ROM.

int baud=9600;// Set baud rate to 9600

Vi Session defaul tRM vi;// Declares a variable of type ViSession
/1 for instrument communication on COM 2 port
Vi Status vi Status = 0;
/1 Opens session to RS-232 device at serial port 2
vi St at us=vi OpenDef aul t RM &def aul t RV ;
vi St at us=vi Open(defaul tRM "ASRL2::INSTR', VI _NULL, VI _NULL, &i);

vi St at us=vi Enabl eEvent (vi, VI_EVENT_| O COMPLETI ON, VI _QUEUE, VI _NULL);

viCear(vi);// Sends device clear command

I/ Set attributes for the session

vi SetAttribute(vi,VI_ATTR ASRL_BAUD, baud);

vi SetAttribute(vi, VI _ATTR ASRL_DATA BI TS, 8);

Queries Using HP Basic and RS-232

This portion of the program from the example program “Queries Using HP Basic and RS-232” on
page 44, example program demonstrates signal generator query commands over RS-232. Query
commands are of the type *I DN? and are identified by the question mark that follows the mnemonic.

Start HP Basic, type in the following commands, and then RUN the program:

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2.t xt. For the full text of this program, refer to “Queries Using HP Basic and RS-232” on
page 44 or to the signal generator’s documentation CD-ROM.

190 QUTPUT 9; "*| DN?" ! Querys the sig gen ID

200 ENTER 9; Str$! Reads the ID

210 VAIT 2 I Waits 2 seconds

220 PRINT "ID =",Str$! Prints IDto the screen

230 QUTPUT 9; "PON AWPL -5 dbni ! Sets the the power level to -5 dbm
240 QUTPUT 9; " PONP" ! Querys the power |evel of the sig gen

Queries for RS-232 Using VISA and C

This portion of the program the example program “Queries for RS-232 Using VISA and C” on
page 44, uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional.

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2. cpp. For the full text of this program, refer to “Queries for RS-232 Using VISA and C” on
page 44 or to the signal generator’s documentation CD-ROM.

status = vi OpenDefaul tRM &efaul tRM;// Initializes the system

// Open conmmunication with Serial Port 2

status = vi Open(defaul tRM "ASRL2::|NSTR', VI_NULL, VI _NULL, & nstr);

44 Agilent E8663B Analog Signal Generator Programming Guide

3 Programming Examples

e “Using the Programming Interface Examples” on page 46
¢ “GPIB Programming Interface Examples” on page 52
e “LAN Programming Interface Examples” on page 87

e “RS-232 Programming Interface Examples” on page 118

Agilent E8663B Analog Signal Generator Programming Guide

45

Programming Examples
Using the Programming Interface Examples

Using the Programming Interface Examples

The programming examples for remote control of the signal generator use the GPIB, LAN, and
RS-232 interfaces and demonstrate instrument control using different 10 libraries and programming
languages. Many of the example programs in this chapter are interactive; the user will be prompted
to perform certain actions or verify signal generator operation or functionality. Example programs are
written in the following languages:

HP Basic C#

C/C++ Microsoft Visual Basic 6.0
Java MATLAB

Perl

These example programs are also available on the signal generator Documentation CD-ROM, enabling
you to cut and paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Local key are disabled. Press the Local key to revert to manual operation.

To have the signal generator’s front panel update with changes caused by remote operations, enable
the signal generator’s Update in Remote function.

NOTE The Update in Remote function will slow test execution. For faster test execution, disable the
Update in Remote function. (For more information, refer to “Configuring the Display for
Remote Command Setups” on page 12.

Programming Examples Development Environment

The C/C++ examples were written using an IBM-compatible personal computer (PC), configured as
follows:

e Pentium” processor (Pentium is a registered trademark of Intel Corporation.)
¢ Windows NT 4.0 operating system

¢ (C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

* National Instruments PCI-GPIB interface card or Agilent GPIB interface card
¢ National Instruments VISA Library or Agilent VISA library

¢ (COMI1 or COM2 serial port available

* LAN interface card

The HP Basic examples were run on a UNIX 700 series workstation.

46 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
Using the Programming Interface Examples

Running C++ Programs

When using Microsoft Visual C++ 6.0 to run the example programs, include the following files in your
project.

When using the VISA library:

e add the visa32.lib file to the Resource Files
¢ add the visa.h file to the Header Files

When using the NI-488.2 library:

¢ add the GPIB-32.0BJ file to the Resource Files
¢ add the windows.h file to the Header Files
¢ add the Deci-32.h file to the Header Files

For information on the NI-488.2 library and file requirements refer to the National Instrument
website. For information on the VISA library see the Agilent website or National Instrument’s
website.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the VXI-11 for LAN” on
page 23.

C/C++ Examples

“Interface Check for GPIB Using VISA and C” on page 58

“Queries for RS-232 Using VISA and C” on page 122

“Local Lockout Using NI-488.2 and C++” on page 60

“Queries Using NI-488.2 and Visual C++” on page 63

“Queries for GPIB Using VISA and C” on page 65

“Generating a CW Signal Using VISA and C” on page 67

“Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 69
“Generating an Internal FM Signal Using VISA and C” on page 71

“Generating a Step-Swept Signal Using VISA and C++” on page 73

“Reading the Data Questionable Status Register Using VISA and C” on page 79
“Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 83
“VXI-11 Programming Using SICL and C++” on page 88

“VXI-11 Programming Using VISA and C++” on page 89

“Sockets LAN Programming and C” on page 91

“Interface Check Using VISA and C” on page 119

“Queries for RS-232 Using VISA and C” on page 122

Agilent E8663B Analog Signal Generator Programming Guide 47

Programming Examples
Using the Programming Interface Examples

Running C# Examples

To run the example program State_Files.cs on page 159, you must have the .NET framework installed
on your computer. You must also have the Agilent IO Libraries installed on your computer. The .NET
framework can be downloaded from the Microsoft website. For more information on running C#
programs using .NET framework, see Chapter 5.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the VXI-11 for LAN” on
page 23.

Running Basic Examples

The BASIC programming interface examples provided in this chapter use either HP Basic or Visual
Basic 6.0 languages.

Visual Basic 6.0® Programming Examples

To run the example programs written in Visual Basic 6.0 you must include references to the 10
Libraries. For more information on VISA and IO libraries, refer to the Agilent VISA User’s Manual,
available on Agilent’s website: http./www.agilent.com. In the Visual Basic IDE (Integrated
Development Environment) go to Project-References and place a check mark on the following
references:

¢ Agilent VISA COM Resource Manager 1.0
¢ VISA COM 1.0 Type Library

NOTE If you want to use VISA functions such as viWrite, then you must add the visa32.bas module
to your Visual Basic project.

The signal generator’s VXI-11 SCPI service must be on before you can run the Download Visual Basic
6.0 programming example.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the DHCP LAN” on
page 25.

1. Visual Basic is a registered trademark of Microsoft corporation

48 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
Using the Programming Interface Examples

You can start a new Standard EXE project and add the required references. Once the required
references are included, you can copy the example programs into your project and add a command
button to Fornl that will call the program.

The example Visual Basic 6.0 programs are available on the signal generator Documentation CD-ROM,
enabling you to cut and paste the examples into your project.

Visual Basic Examples
The Visual Basic examples enable the use of waveform files and are located in Chapter 5.

¢ “Creating I/Q Data—Little Endian Order” on page 272
¢ “Downloading I/Q Data” on page 275

HP Basic Examples

¢ “Interface Check using HP Basic and GPIB” on page 56
¢ “Local Lockout Using HP Basic and GPIB” on page 59
¢ “Queries Using HP Basic and GPIB” on page 62

¢ “Queries Using HP Basic and RS-232” on page 121

Running Java Examples

The Java program “Sockets LAN Programming Using Java” on page 115, connects to the signal
generator via sockets LAN. This program requires Java version 1.1 or later be installed on your PC.
For more information on sockets LAN programming with Java, refer to “Sockets LAN Programming
Using Java” on page 115.

Running MATLAB Examples

For information regarding programming examples and files required to create and play waveform
files, refer to Chapter 5.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the DHCP LAN” on
page 25.

Running Perl Examples

The Perl example “Sockets LAN Programming Using PERL” on page 116, uses PERL script to control
the signal generator over the sockets LAN interface.

Agilent E8663B Analog Signal Generator Programming Guide 49

Programming Examples
Using GPIB

Using GPIB

GPIB enables instruments to be connected together and controlled by a computer. GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card or NI-GPIB interface
card for your PC or UNIX-based system.

¢ “Installing the GPIB Interface Card” on page 50
¢ “Set Up the GPIB Interface” on page 18
¢ “Verify GPIB Functionality” on page 18

NOTE You can also connect GPIB instruments to a PC LAN port using the Agilent 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card. For more

information, go to http./www.agilent.com/find/gpib.

Installing the GPIB Interface Card

A GPIB interface card must be installed in the computer. Two common GPIB interface cards are the
National Instruments (NI) PCI-GPIB card and the Agilent GPIB interface card. Follow the interface

card instructions for installing and configuring the card. The following table provide lists on some of
the available interface cards. Also, see the Agilent website, http://www.agilent.com for details on

GPIB interface cards.

Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Card System BUS (kB/sec)
Agilent GPIB Interface Card for PC-Based Systems
Agilent 82341C Windows? VISA / SICL | C/C++, Visual ISA/EISA, 750 Built-in
for ISA bus 95/98/NT Basic, Agilent 16 bit
computers /2000® VEE, HP Basic for
Windows
Agilent 82341D Windows VISA / SICL | C/C++, Visual ISA/EISA, 750 Built-in
Plug&Play for 95 Basic, Agilent 16 bit
PC VEE, HP Basic for
Windows
Agilent 82350A Windows VISA / SICL C/C++, Visual PCI 32 bit 750 Built-in
for PCI bus 95/98/NT Basic, Agilent
computers /2000 VEE, HP Basic for
Windows
Agilent 82350B Windows VISA / SICL C/C++, Visual PCI 32 bit > 900 Built-in
for PCI bus 98(SE)/ME/2000 Basic, Agilent
computers /XP VEE, HP Basic for
Windows
50 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples

Using GPIB
Interface Operating 10 Library Languages Backplane/ Max IO Buffering
Card System BUS (kB/sec)
NI- GPIB Interface Card for PC-Based Systems
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments 95/98/2000/ NI-488.20P Visual BASIC,
PCI-GPIB ME/NT LabView
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments NT NI-488.2 Visual BASIC,
PCI- GPIB+ LabView
Agilent- GPIB Interface Card for HP-UX Workstations
Agilent E2071C HP-UX 9x, VISA/SICL ANSI C, EISA 750 Built-in
HP-UX 10.01 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2071D HP-UX 10.20 VISA/SICL ANSI C, EISA 750 Built-in
Agilent VEE,
Agilent BASIC,
HP-UX
Agilent E2078A HP-UX 10.20 VISA/SICL ANSI C, PCI 750 Built-in
Agilent VEE,
Agilent BASIC,
HP-UX
a.Windows 95, 98, NT, 2000 and XP are registered trademarks of Microsoft Corporation
b.NI-488.2 is a trademark of National Instruments Corporation
Agilent E8663B Analog Signal Generator Programming Guide 51

Programming Examples
GPIB Programming Interface Examples

GPIB Programming Interface Examples

“Interface Check using HP Basic and GPIB” on page 56

“Interface Check Using NI-488.2 and C++” on page 57

“Interface Check for GPIB Using VISA and C” on page 58

“Local Lockout Using HP Basic and GPIB” on page 59

“Local Lockout Using NI-488.2 and C++” on page 60

“Queries Using HP Basic and GPIB” on page 62

“Queries Using NI-488.2 and Visual C++” on page 63

“Queries for GPIB Using VISA and C” on page 65

“Generating a CW Signal Using VISA and C” on page 67

“Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 69
“Generating an Internal FM Signal Using VISA and C” on page 71

“Generating a Step-Swept Signal Using VISA and C++” on page 73

“Generating a Swept Signal Using VISA and Visual C++” on page 74

“Saving and Recalling States Using VISA and C” on page 77

“Reading the Data Questionable Status Register Using VISA and C” on page 79
“Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 83

Before Using the GPIB Examples

HP Basic addresses the signal generator at 719. The GPIB card is addressed at 7 and the signal
generator at 19. The GPIB address designator for other libraries is typically GPIBO or GPIBI.

GPIB Function Statements (Command Messages)

Function statements are the basis for GPIB programming and instrument control. These function
statements, combined with SCPI, provide management and data communication for the GPIB interface
and the signal generator.

This section describes functions used by different IO libraries. For more information, refer to the
NI-488.2 Function Reference Manual for Windows, Agilent Standard Instrument Control Library

reference manual, and Microsoft” Visual C++ 6.0! documentation.

Microsoft is a registered trademark of Microsoft Corporation.

52

Agilent E8663B Analog Signal Generator Programming Guide

Abort Function

Programming Examples
GPIB Programming Interface Examples

The HP Basic function ABCRT and the other listed IO library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.
Typically, this is an initialization command used to place the GPIB in a known starting condition.

Library

Function Statement

Initialization Command

HP Basic

The ABORT function stops all GPIB activity.

10 ABORT 7

VISA Library

In VISA, the viTerminate command requests a VISA session
to terminate normal execution of an asynchronous operation.
The parameter list describes the session and job id.

vi Ter m nat e (parameter list)

executing with the session i d. This function is supported
with C/C++ on Windows 3.1 and Series 700 HP-UX.

NI-488.2 The NI-488.2 library function aborts any asynchronous read, i bstop(int ud)
write, or command operation that is in progress. The
parameter ud is the interface or device descriptor.

SICL The Agilent SICL function aborts any command currently iabort (id)

Remote Function

The HP Basic function REMOTE and the other listed 10 library functions change the signal generator
from local operation to remote operation. In remote operation, the front panel keys are disabled
except for the Local key and the line power switch. Pressing the Local key restores manual operation.

Library

Function Statement

Initialization Command

HP Basic

The REMOTE 719 function disables the front panel operation
of all keys with the exception of the Local key.

10 REMOTE 719

VISA Library

The VISA library, at this time, does not have a similar
command.

N/A

the i d parameter, into remote mode and disables the front
panel keys. Pressing the Local key on the signal generator
front panel restores manual operation. The parameter id is
the session identifier.

NI-488.2 The NI-488.2 library function asserts the Remote Enable Enabl eRenpt e (parameter
(REN) GPIB line. All devices listed in the parameter list are list)
put into a listen-active state although no indication is
generated by the signal generator. The parameter list
describes the interface or device descriptor.
SICL The Agilent SICL function puts an instrument, identified by i remote (id)

Agilent E8663B Analog Signal Generator Programming Guide

53

Programming Examples
GPIB Programming Interface Examples

Local Lockout Function

The HP Basic function LOCAL LOCKOUT and the other listed IO library functions disable the front
panel keys including the Local key. With the Local key disabled, only the controller (or a hard reset of
line power) can restore local control.

Library

Function Statement

Initialization Command

HP Basic

The LOCAL LOCKOUT function disables all front- panel signal
generator keys. Return to local control can occur only by
cycling power on the instrument, when the LOCAL command
is sent or if the Preset key is pressed.

10 LOCAL LOCKOUT 719

VISA Library

The VISA library, at this time, does not have a similar
command.

N/A

access to front panel keys operation. The function puts an
instrument, identified by the i d parameter, into remote
mode with local lockout. The parameter i d is the session
identifier and instrument address list.

NI-488.2 The LOCAL LOCKQOUT function disables all front- panel signal Set RALS (parameter list)
generator keys. Return to local control can occur only by
cycling power on the instrument, when the LOCAL command
is sent or if the Preset key is pressed.

SICL The Agilent SICL igpibllo prevents function prevents user igpibllo (id)

Local Function

The HP Basic function LOCAL and the other listed functions return the signal generator to local
control with a fully enabled front panel.

command.

Library Function Statement Initialization Command
HP Basic The LOCAL 719 function returns the signal generator to 10 LOCAL 719

manual operation, allowing access to the signal generator’s

front panel keys.
VISA Library The VISA library, at this time, does not have a similar N/A

NI-488.2

The NI-488.2 library function places the interface in local
mode and allows operation of the signal generator’s front
panel keys. The ud parameter in the parameter list is the
interface or device descriptor.

ibloc (int ud)

SICL

The Agilent SICL function puts the signal generator into
Local operation; enabling front panel key operation. The i d
parameter identifies the session.

i1oc(id)

54

Agilent E8663B Analog Signal Generator Programming Guide

Clear Function

The HP Basic function CLEAR and the other listed 10 library functions

Programming Examples
GPIB Programming Interface Examples

clear the signal generator.

Library

Function Statement

Initialization Command

HP Basic

The CLEAR 719 function halts all pending output- parameter
operations, resets the parser (interpreter of programming
codes) and prepares for a new programming code, stops any
sweep in progress, and turns off continuous sweep.

10 CLEAR 719

VISA Library

The VISA library uses the viClear function. This function
performs an IEEE 488.1 clear of the signal generator.

vi Cl ear (Vi Sessi on vi)

NI-488.2 The NI-488.2 library function sends the GPIB Selected ibclr(int ud)
Device Clear (SDC) message to the device described by ud.
SICL The Agilent SICL function clears a device or interface. The iclear (id)

function also discards data in both the read and write
formatted IO buffers. The i d parameter identifies the
session.

Output Function

The HP Basic I0 function QUTPUT and the other listed IO library functions put the signal generator
into a listen mode and prepare it to receive ASCII data, typically SCPI commands.

Library

Function Statement

Initialization Command

HP Basic

The function OUTPUT 719 puts the signal generator into
remote mode, makes it a listener, and prepares it to receive
data.

10 QUTPUT 719

VISA Library

The VISA library uses the above function and associated
parameter list to output data. This function formats
according to the format string and sends data to the device.
The parameter list describes the session id and data to send.

viPrintf(parameter list)

NI-488.2 The NI-488.2 library function addresses the GPIB and writes i bwt (parameter |ist)
data to the signal generator. The parameter list includes the
instrument address, session id, and the data to send.

SICL The Agilent SICL function converts data using the format iprintf (paraneter

string. The format string specifies how the argument is
converted before it is output. The function sends the
characters in the format string directly to the instrument.
The parameter list includes the instrument address, data
buffer to write, and so forth.

list)

Agilent E8663B Analog Signal Generator Programming Guide

55

Programming Examples
GPIB Programming Interface Examples

Enter Function

The HP Basic function ENTER reads formatted data from the signal generator. Other IO libraries use
similar functions to read data from the signal generator.

Library Function Statement Initialization Command

HP Basic The function ENTER 719 puts the signal generator into 10 ENTER 719;
remote mode, makes it a talker, and assigns data or status
information to a designated variable.

VISA Library The VISA library uses the viScanf function and an viScanf (parameter list)
associated parameter list to receive data. This function
receives data from the instrument, formats it using the
format string, and stores the data in the argument list. The
parameter list includes the session id and string argument.

NI-488.2 The NI-488.2 library function addresses the GPIB, reads ibrd (parameter list)
data bytes from the signal generator, and stores the data
into a specified buffer. The parameter list includes the
instrument address and session id.

SICL The Agilent SICL function reads formatted data, converts it, iscanf (parameter list)
and stores the results into the argument list. The conversion
is done using conversion rules for the format string. The
parameter list includes the instrument address, formatted
data to read, and so forth.

Interface Check using HP Basic and GPIB

This simple program causes the signal generator to perform an instrument reset. The SCPI command
*RST places the signal generator into a pre-defined state and the remote annunciator (R) appears on
the front panel display.

The following program example is available on the signal generator Documentation CD-ROM as
basicex1.txt.

10 [k kR kR kR R kR kR kR kR kR Rk kR Rk kR kR Rk kR kR kR Rk Rk K Rk
20 !

30 ! PROGRAM NAME: basi cex1l. t xt

40 !

50 ! PROGRAM DESCRI PTION: This programverifies that the GPIB connections and
60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the follow ng conmands and then
120 ! RUN the program

130 !

56 Agilent E8663B Analog Signal Generator Programming Guide

140 R R R R R R LR E]

150 !

160 Sig_gen=719
170 LOCAL Sig_gen
180 CLEAR Sig_gen
190 REMOTE 719
200 CLEAR SCREEN
210 REMOTE 719

Decl ares a variable to hold the signal

Pl aces the signal generator i

Clears any pending data |I/O and resets the parser

nto Local node

Puts the signal generator into renpte node

Clears the controllers display

220 QUTPUT Sig_gen;"*RST" !

230 PRI NT "The signal

240 PRINT

gener at or

Pl aces the signal generator
shoul d now be in REMOTE."

250 PRINT "Verify that the rempte [R] annunci ator
260 PRINT "on the front panel

270 PRINT

to return the signal

280 PRINT "Press RUN to start again."
290 END ! Program ends

Interface Check Using NI-488.2 and C++

Programming Examples

GPIB Programming Interface Examples

generator's address

into a defined state

is on. Press the “Local' key,

generator to |ocal

control . "

This example uses the NI-488.2 library to verify that the GPIB connections and interface are
functional. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the signal generator Documentation CD-ROM as

ni ex1. cpp.

[] KRk kkkkkkkkkkkkkkkkkkkkkkkkkkkkk Kk kkkkkkkkkkkkkkkkhkkkhkkkkkkkhkkkkhkkkhkkkkkkkkkkk kK ok

11

/1 PROGRAM NAME: ni ex1.cpp

Il

/1 PROGRAM DESCRI PTION: This programverifies that the GPIB connections and

/1 interface are functional.

I

/1 Connect a GPIB cable fromthe PC GPIB card to the signal generator

/1 Enter the following code into the source .cpp file and execute the program

11

[] KREKkkkkkkkkkkkkkkkkkkkkkkkkkkkkk Kk kkkkkkkkkkkhkkkkhkkkhkkkkkhkhkkkkhkkkhkkkkkkkkkkk kK Kk

#i ncl ude "stdafx. h"

#i nclude <iostrean»
#i ncl ude "wi ndows. h"
#i nclude "Decl -32. h"

usi ng nanespace std;

int GPlBO= 0;

/1 Board handl e

Agilent E8663B Analog Signal Generator Programming Guide

57

Programming Examples
GPIB Programming Interface Examples

Addr 4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{
int sig; /| Declares a device descriptor variable
sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor
ibclr(sig); /1 Sends device clear nessage to signal generator
ibwt(sig, "*RST", 4); /'l Places the signal generator into a defined state

/1 Print data to the output w ndow
cout << "The signal generator should now be in REMOTE. The renote indicator"<<endl;
cout <<"annunci ator R should appear on the signal generator display"<<endl;
return O;
}

Interface Check for GPIB Using VISA and C

This program uses VISA library functions and the C language to communicate with the signal
generator. The program verifies that the GPIB connections and interface are functional. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. vi saex1. cpp performs the following functions:

¢ verifies the GPIB connections and interface are functional
* switches the signal generator into remote operation mode

The following program example is available on the signal generator Documentation CD-ROM as
visaexl.cpp.

[Rk R kKR KRR KRk K R R KRR KR KKK kR KRR R KR KRR KRR KR K R KRRk R R KK R

/1 PROGRAM NAME: vi saex1. cpp

11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e program verifies that the GPIB connections and

/1 and interface are functional.

/1 Turn signal generator power off then on and then run the program

11

[RF KKKk ok k ok ok ok k ok ok kk ok ok kkkkkkkkkk ok Kk kkk Kk ok kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkhkkkhkkkkhkkkkkk kK ok

#i ncl ude <visa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i nclude <stdlib. h>

void main ()

58 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

{
Vi Sessi on defaul tRM vi; /| Declares a variable of type ViSession
/1 for instrument communication

Vi Status vi Status = 0;
/1 Opens a session to the GPIB device
/1 at address 19

vi St at us=vi OpenDef aul t RM &def aul t RM ;

vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);

if(viStatus){

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");
exit(0);}
VviPrintf(vi, "*RST\n"); // initializes signal generator
// prints to the output w ndow
printf("The signal generator should now be in REMOTE. The renote indicator\n");

printf("annunciator R shoul d appear on the signal generator display\n");

printf("\n");

vi G ose(vi); /1 closes session

vi Cl ose(defaul tRV; /'l closes default session
}

Local Lockout Using HP Basic and GPIB

This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal
generator keys. basi cex2. t xt performs the following functions:

* resets instrument
* places signal generator into local
¢ places signal generator into remote

The following program example is available on the signal generator Documentation CD-ROM as
basi cex2. t xt.

10 PR kR kR KRR KRRk KRR KRR KRR KRR K KR KKKk R R KKKk KRR Rk KRR KKKk
20 !

30 ! PROGRAM NAME: basi cex2. t xt

40 !

50 ! PROGRAM DESCRI PTION: I n REMOTE node, access to the signal generators

60 ! functional front panel keys are di sabl ed except for

70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command wi Il disable the Local key.

90 ! The LOCAL command, executed fromthe controller, is then
100 ! the only way to return the signal generator to front panel,

Agilent E8663B Analog Signal Generator Programming Guide 59

Programming Examples
GPIB Programming Interface Examples

110 ! Local, control.

120 I ARk kR Rk Ak kR Rk ok kR Rk kR kR Ak kR Rk kR Rk kKR ARk KRR A Ak
130 Sig_gen=719 ! Declares a variable to hold signal generator address

140 CLEAR Sig_gen ! Resets signal generator parser and clears any output

150 LOCAL Sig_gen ! Places the signal generator in |ocal node

160 REMOTE Si g_gen ! Places the signal generator in renpte node

170 CLEAR SCREEN ! Clears the controllers display

180 QUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state
190 ! The followi ng print statements are user pronpts

200 PRI NT "The signal generator should now be in renote."
210 PRINT "Verify that the "R and 'L' annunciators are visable"

220 PRINT ".......... Press Conti nue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT node
250 PRI NT ! Prints user pronpt nessages

260 PRI NT "Signal generator should now be in LOCAL LOCKOUT node."

270 PRINT

280 PRINT "Verify that all keys including "“Local' (except Contrast keys) have no effect."
290 PRINT

300 PRINT ".......... Press Conti nue"

310 PAUSE

320 PRINT

330 LOCAL 7 ! Returns signal generator to Local control
340 ! The followi ng print statements are user pronpts

350 PRI NT "Signal generator should now be in Local node."

360 PRINT

370 PRINT "Verify that the signal generator's front-panel keyboard is functional."
380 PRINT

390 PRINT "To re-start this program press RUN."

400 END

Local Lockout Using NI-488.2 and C++

This example uses the NI-488.2 library to set the signal generator local lockout mode. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. ni ex2. cpp performs the following functions:

¢ all front panel keys, except the contrast key

¢ places the signal generator into remote

¢ prompts the user to verify the signal generator is in remote
* places the signal generator into local

The following program example is available on the signal generator Documentation CD-ROM as
ni ex2. cpp.

[] KA KRk KAk KKK KKK A K KKK KKK KA K KKK R KKK KA KKK KA KR KKK KA KKK AR KKK KKK A KA KKK A AR KK R Kk h KK

60 Agilent E8663B Analog Signal Generator Programming Guide

/1 PROGRAM NAME:
11

/| PROGRAM DESCRI PTI ON: This programwi ||
/1 LOCAL LOCKOUT node. All

/'l The | ocal

/'l return the signal

conmand,

ni ex2. cpp

"ibloc(sig)’

front panel
executed via program code,

generator to front panel,

keys,

Programming Examples
GPIB Programming Interface Examples

pl ace the signal generator into
be di sabl ed.

is the only way to

except the Contrast key, will

Local, control.

[] KA KAk KA kKKK KK KA KK KKK Ak A A K KKK R KKK KA KKK KA KKK IR A KA KKK AR KKK KKK A KA K KA KA AR A K R Kk kKK

#i ncl ude "stdafx. h"

#i ncl ude <i ostrean»

#i ncl ude "w ndows. h"

#i ncl ude "Decl -32. h"
usi ng namespace std;
int GPIBO= O0;

Addr 4882_t Address[31];

/1 Board handl e
/| Declares a variable of type Addr4882_t

int main()

{
int sig; /|l Declares variable to hold interface descriptor
sig = ibdev(0, 19, 0, 13, 1, 0); /1 Opens and initialize a device descriptor
ibclr(sig); /1 Sends GPIB Sel ected Device Clear (SDC) nessage
ibwt(sig, "*RST", 4); /1 Places signal generator in a defined state
cout << "The signal generator should now be in REMOTE. The renpte node R "<<endl;
cout <<"annunci ator should appear on the signal generator display."<<endl;
cout <<"Press Enter to continue"<<endl;
cin.ignore(10000,'\n");
Sendl FC(GPI BO) ; /1l Resets the GPIB interface
Addr ess[0] =19; /1 Signal generator's address
Addr ess[1] =NOADDR; /1l Signifies end elenent in array. Defined in

/1 DECL-32.H
Set RWLS(GPI BO, Address); /1l Places device in Renpte with Lockout State.
cout<< "The signal generator should now be in LOCAL LOCKOQUT. Verify that all
keys" <<endl
cout<< "including the 'Local' key are disabled (Contrast keys are not
af f ect ed) " <<endl ;

cout <<"Press Enter to continue"<<endl;
cin.ignore(10000,'\n");
ibloc(sig); /1 Returns signal generator to local control
cout <<end| ;
cout <<"The signal generator should now be in |ocal node\n";

return 0;}

}

Agilent E8663B Analog Signal Generator Programming Guide 61

Programming Examples
GPIB Programming Interface Examples

Queries Using HP Basic and GPIB

This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark as in the
identify command *| DN? basi cex3.txt perforns the follow ng functions:

clears the signal generator

queries the signal generator’s settings

The following program example is available on the signal generator Documentation CD-ROM as
basi cex3. txt.

10 R R KRR R R KRR KR KRR R R KRR R R KRRk R KKk KR KRR KR KRR K R K KKK K
20 !

30 ! PROGRAM NAME: basi cex3. t xt

40 !

50 ! PROGRAM DESCRI PTION: In this exanple, query comands are used with response
60 ! data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the foll owing program

90 !

D00 I RR AR KRRk kR R KKk kR KRRk kKRR KRRk K KRR K KRR KR K R R KR K R R KKK K R Kk
110 !

120 DI M A$[10], C$[100] , D$[10] ! Declares variables to hold string response data
130 | NTEGER B | Declares variable to hold integer response data
140 Si g_gen=719 | Declares variable to hold signal generator address
150 LOCAL Sig_gen ! Puts signal generator in Local node

160 CLEAR Si g_gen | Resets parser and clears any pendi ng out put

170 CLEAR SCREEN | Cears the controller’s display

180 QUTPUT Si g_gen; "*RST" ! Puts signal generator into a defined state

190 QUTPUT Si g_gen; " FREQ CW?" I Querys the signal generator CWfrequency setting
200 ENTER Si g_gen; F ! Enter the CWfrequency setting

210 ! Print frequency setting to the controller display

220 PRI NT "Present source CWfrequency is: ";F/ 1. E+6;" MHz"

230 PRI NT

240 QUTPUT Si g_gen; "PON AMPL?" | Querys the signal generator power |evel

250 ENTER Si g_gen; W ! Enter the power |evel

260 ! Print power level to the controller display

270 PRI NT "Current power setting is: ";W"dBM

280 PRI NT

290 QUTPUT Si g_gen; "FREQ MODE?" | Querys the signal generator for frequency node
300 ENTER Si g_gen; A$! Enter in the node: CW Fixed or List

310 ! Print frequency node to the controller display

320 PRI NT "Source's frequency node is: ";A$

330 PRI NT

62 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

340 QUTPUT Sig_gen;"QUTP OFF" ! Turns signal generator RF state off

350 QUTPUT Sig_gen; " QUTP?" ! Querys the operating state of the signal generator
360 ENTER Si g_gen; B ! Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display
380 | F B>0 THEN

390 PRI NT "Signal Generator output is: on"

400 ELSE

410 PRI NT "Signal Generator output is: off"

420 END IF

430 QUTPUT Sig_gen; "*| DN?" ! Querys for signal generator ID

440 ENTER Si g_gen; C$! Enter in the signal generator ID

450 ! Print the signal generator IDto the controller display

460 PRINT

470 PRI NT "This signal generator is a ";C$

480 PRINT

490 ! The next command is a query for the signal generator's GPIB address
500 QUTPUT Sig_gen; " SYST: COMWM GPI B: ADDR?"

510 ENTER Si g_gen; D$! Enter in the signal generator's address
520 ! Print the signal generator's GPIB address to the controllers display
530 PRINT "The GPIB address is ";D$

540 PRINT

550 ! Print user pronpts to the controller's display

560 PRI NT "The signal generator is now under |ocal control”
570 PRINT "or Press RUN to start again."
580 END

Queries Using NI-488.2 and Visual C++

This example uses the NI-488.2 library to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. ni ex3. cpp performs the following functions:

* resets the signal generator
¢ queries the signal generator for various settings
¢ reads the various settings

The following program example is available on the signal generator Documentation CD-ROM as
ni ex3. cpp.

[R R Rk KRk R KRRk K R R KR K R R KRk R KR KRk R R KKk K R KK R R KK R R KKK
/1 PROGRAM NAME: ni ex3. cpp

11

/1 PROGRAM DESCRI PTI ON: This exanpl e denponstrates the use of query conmands.

11

/1 The signal generator can be queried for conditions and instrunment states.

/1 These commands are of the type "*IDN?" where the question mark indicates

Agilent E8663B Analog Signal Generator Programming Guide 63

Programming Examples
GPIB Programming Interface Examples

/1 a query.
11

[FF AR Rk K kK kK KKK KK KKK KK A A KKK IR A KA KKK KR KKK KK IR A K KKK AR KR KKK KA A KA KKK A AR A K Rk kKK

#i ncl ude "stdafx. h"

#i ncl ude <i ostreanp
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"

usi ng namespace std;

int GPIBO= O; /1 Board handl e
Addr 4882_t Address[31]; /1 Declare a variable of type Addr4882_t
int main()
{
int sig; /| Declares variable to hold interface descriptor
int num
char rdval [100]; /| Declares variable to read instrument responses
sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor
i bloc(sig); /'l Places the signal generator in |ocal node
ibclr(sig); /1 Sends Sel ected Device C ear(SDC) nessage
ibwt(sig, "*RST", 4); /'l Places signal generator in a defined state
ibwt(sig, ":FREQency: CW",614); // Querys the CWfrequency
ibrd(sig, rdval, 100); /1 Reads in the response into rdVal
rdVval [ibcntl] = "'\0"; /1 Nul'l character indicating end of array
cout <<"Source CW frequency is "<<rdVval; /1 Print frequency of signal generator

cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

ibwt(sig, "POWNAWL?",10); /1 Querys the signal generator
ibrd(sig, rdval, 100); /1 Reads the signal generator power |evel
rdVal [ibcntl] = "'\0"; /1 Null character indicating end of array

/1l Prints signal generator power |evel
cout <<"Source power (dBm) is : "<<rdVal;
cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");

ibwt(sig, ":FREQ MODE?", 11); /1 Querys source frequency node
ibrd(sig, rdval, 100); /1l Enters in the source frequency node
rdVal [ibcntl] = '\0"; /1 Nul'l character indicating end of array

cout <<"Source frequency node is "<<rdVal; // Print source frequency node
cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwt(sig, "OUTP OFF",12); /1 Turns off RF source

64 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

ibwt(sig, "OUTP?",5); /'l Querys the on/off state of the instrunent
ibrd(sig, rdval,2); /1 Enter in the source state
rdVal [ibcntl] = "'\0";
num = (int (rdval[0]) -('0"));
if (num> 0){
cout<<"Source RF state is : On"<<endl;

tel se{
cout<<"Source RF state is : Of"<<endl;}
cout <<endl ;
ibwt(sig, "*IDN?",5); /1 Querys the instrunent ID
ibrd(sig, rdval, 100); /'l Reads the source ID
rdVal [ibcntl] = "'\0"; /1 Null character indicating end of array
cout<<"Source IDis : "<<rdval; // Prints the source |ID

cout <<"Press any key to continue"<<endl;
cin.ignore(10000,'\n");
ibwt(sig, "SYST: COW GPIB: ADDR?", 20); //Querys source address

ibrd(sig, rdval, 100); /| Reads the source address
rdVal [ibcntl] = "'\0"; /1 Nul'l character indicates end of array
/1 Prints the signal generator address
cout<<"Source GPIB address is : "<<rdVval;
cout <<endl ;
cout<<"Press the 'Local' key to return the signal generator to LOCAL control "<<endl; cout <<end| ;
return O;

}
Queries for GPIB Using VISA and C

This example uses VISA library functions to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. vi saex3. cpp performs the following functions:

¢ verifies the GPIB connections and interface are functional

* resets the signal generator

¢ queries the instrument (CW frequency, power level, frequency mode, and RF state)
* reads responses into the rdBuffer (CW frequency, power level, and frequency mode)
* turns signal generator RF state off

¢ verifies RF state off

The following program example is available on the signal generator Documentation CD-ROM as
vi saex3. cpp.

[Rk R kKR R R R KRk kKR KK KR KKK kR KRR KR KRR KRR KR K R R KRk R R KK R
/1 PROGRAM FI LE NAME: vi saex3. cpp

11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of query commands. The signal

/1 generator can be queried for conditions and instrument states. These commands are of

/1 the type "*IDN?"; the question mark indicates a query.

Agilent E8663B Analog Signal Generator Programming Guide 65

Programming Examples
GPIB Programming Interface Examples

Il

[RF KA K Kk kA kK KK Rk KA K KKK KKk A A K KK R KKK KA KKK A IR K IR A KA KKK KA KA KKK IR A KA KKK KA KR A KKK IR AKX Kk

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#i ncl ude <coni o. h>
#i nclude <stdlib. h>

usi ng namespace std;

void main ()

{

Vi Session defaul tRM vi; /'l Declares variables of type ViSession
/1 for instrument communication

Vi Status vi Status = 0; /'l Declares a variable of type ViStatus
/1l for GPIB verifications

char rdBuffer [256]; /'l Declares variable to hold string data

int num /| Declares variable to hold integer data

I/ Initialize the VISA system
vi St at us=vi OpenDef aul t RM &def aul t RM ;
/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problens, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(0);}
VviPrintf(vi, "*RST\n"); /'l Resets signal generator
viPrintf(vi, "FREQ CWP\n"); /'l Querys the CWfrequency
vi Scanf (vi, "%", rdBuffer); /| Reads response into rdBuffer

/'l Prints the source frequency
printf("Source CWfrequency is : %\n", rdBuffer);
printf("Press any key to continue\n");

printf("\n"); /1 Prints new |line character to the display
getch();

viPrintf(vi, "POWNAMPL?\N"); /'l Querys the power |evel

vi Scanf (vi, "%", rdBuffer); /! Reads the response into rdBuffer

/1 Prints the source power |evel
printf("Source power (dBm) is : %\n", rdBuffer);
printf("Press any key to continue\n");

printf("\n"); /1 Prints new |line character to the display

66 Agilent E8663B Analog Signal Generator Programming Guide

getch();

viPrintf(vi, "FREQ MODE?\n");

vi Scanf (vi, "%", rdBuffer);

Programming Examples

GPIB Programming Interface Examples

/1 Querys the frequency node
/'l Reads the response into rdBuffer
/'l Prints the source freq node

printf("Source frequency node is : %\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n");

getch();

VviPrintf(vi, "OUTP OFF\n");
Vi Printf(vi, "OUTP?\n");

vi Scanf (vi, "%i", &wum;

if (num>0) {
printf("Source RF state is :
tel se{

printf("Source RF state is :

}

vi Cl ose(vi);
vi Cl ose(defaul tRM;
}

/1 Prints new line character to the display
/1 Turns source RF state off
/1 Querys the signal generator's RF state
/1 Reads the response (integer val ue)
/1l Prints the on/off RF state

on\n");

off\n");

/'l Close the sessions

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal generator is set
for a CW frequency of 500 kHz and a power level of —2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.
vi saex4. cpp performs the following functions:

¢ verifies the GPIB connections and interface are functional
* resets the signal generator

* queries the instrument (CW frequency, power level, frequency mode, and RF state)
* reads responses into the rdBuffer (CW frequency, power level, and frequency mode)
¢ turns signal generator RF state off

* verifies RF state off

The following program example is available on the signal generator Documentation CD-ROM as

visaex4.cpp.

[FF KRR Kk kA kK kK Kk K KKK KKK Kk A A K A KK R A KA KA KKK A A KR K IR A KA KKK KA KA KKK IR AKX KKK KA A AR A KKK IR KK A Kk

/1 PROGRAM FI LE NAME: vi saex4. cpp

11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates query commands.

/'l frequency and power |evel

/1 The RF state of the signal
/'l response will indicate that the RF state is on.
/'l queried. The response should indicate that the RF state is off.

generator is turn on and then the state is queried. The

The si gnal

gener at or

The RF state is then turned off and
The query results are

Agilent E8663B Analog Signal Generator Programming Guide

67

Programming Examples
GPIB Programming Interface Examples

I/ printed to the to the display w ndow
11

[FF KRR Kk kA kK KK R kKA KK KKK Kk A A K KKK R KKK KA KKK KA KKK IR KKK KKK K A KKK IR A KA KKK KA AR A KR K IR KK A Kk

#i ncl ude " St dAf x. h"
#i ncl ude <visa. h>
#i ncl ude <i ostreanp
#i nclude <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi; /1 Declares variables of type Vi Session
/1 for instrument communication

Vi Status vi Status = 0; Il Declares a variable of type ViStatus
/1l for GPIB verifications

char rdBuffer [256]; /'l Declare variable to hold string data

int num /'l Declare variable to hold integer data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA system

/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problenms then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(0);}

VviPrintf(vi, "*RST\n"); /'l Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CWfrequency for 500 kHz
VviPrintf(vi, "FREQ CWP\n"); /'l Query the CWfrequency

vi Scanf (vi, "%", rdBuffer); /'l Read signal generator response

printf("Source CWfrequency is : %\n", rdBuffer); // Print the frequency
viPrintf(vi, "PONAWL -2.3 dBmn"); // Set the power level to -2.3 dBm
VviPrintf(vi, "POWNAMPL?\N"); Il Query the power |evel
vi Scanf (vi, "%", rdBuffer); /'l Read the response into rdBuffer
printf("Source power (dBm) is : %\n", rdBuffer); // Print the power |evel
viPrintf(vi, "OUTP: STAT O\\n"); // Turn source RF state on
ViPrintf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &wum; /1 Read the response (integer value)

Il Print the on/off RF state
if (num>0) {

68 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("Source RF state is : on\n");
tel se{
printf("Source RF state is : off\n");
}
printf("\n");
printf("Verify RF state then press continue\n");
printf("\n");
getch();
viCear(vi);
Vi Printf(vi,"OQUTP: STAT OFF\n"); // Turn source RF state off
Vi Printf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &wum; /! Read the response

/1 Print the on/off RF state

if (num>0) {
printf("Source RF state is now. on\n");
tel se{
printf("Source RF state is now off\n");
}

/1 Close the sessions

printf("\n");
viCear(vi);
vi C ose(vi);
vi Cl ose(defaul tRM;
}

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier frequency
of 700 MHz, a power level of —2.5 dBm, and a deviation of 20 kHz. Before running the program:

¢ Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.
* Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.
vi saex5. cpp performs the following functions:

¢ error checking

* resets the signal generator

¢ sets up the EXT 2 connector on the signal generator for FM
* sets up FM path 2 coupling to AC

¢ sets up FM path 2 deviation to 20 kHz

e sets carrier frequency to 700 MHz

¢ sets the power level to -2.5 dBm

¢ turns on frequency modulation and RF output

The following program example is available on the signal generator Documentation CD-ROM as
visaexb.cpp.

[KKKk k ok ok ok k ok ok kk ok ok kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkhkkkhkkkkhkkkkkk kK Kk

Agilent E8663B Analog Signal Generator Programming Guide 69

Programming Examples
GPIB Programming Interface Examples

/1 PROGRAM FI LE NAME: vi saex5. cpp
11

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e sets the signal generator FM source to External
/1 coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power |evel

// to -2.5 dBm The RF state is set to on.
11

[RF KRR Kk kK kK KK Rk KA KK KKK Kk A A K A KK R KKK KA KKK A KR K IR KKK KKK A KKK IR KKK KKK A AR A KKK I kKA Kk

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#include <stdlib. h>
#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi; /'l Declares variables of type Vi Session
/1 for instrunent communication

Vi Status vi Status = 0; /| Declares a variable of type ViStatus

/1 for GPIB verifications
/1 Initialize VISA session
vi St at us=vi OpenDef aul t RM &def aul t RM ;
/| open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 1f problenms, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC-coupled FM signal\n");
printf("Press any key to continue\n");

printf("\n");

getch();

printf("\n");

VviPrintf(vi, "*RST\n"); /1 Resets the signal generator
VviPrintf(vi, "FM SOUR EXT2\n"); /'l Sets EXT 2 source for FM
viPrintf(vi, "FM EXT2: COUP AC\n"); /1l Sets FM path 2 coupling to AC
viPrintf(vi, "FMDEV 20 kHz\n"); /1l Sets FM path 2 deviation to 20 kHz
VviPrintf(vi, "FREQ 700 MHz\n"); /1l Sets carrier frequency to 700 Mz

2,

70 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

viPrintf(vi, "PONAWPL -2.5 dBmn"); // Sets the power level to -2.5 dBm
viPrintf(vi, "FM STAT O\\n"); /1 Turns on frequency nodul ation
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns on RF out put
/1 Print user infornation
printf("Power level : -2.5 dBmn")
printf("FMstate : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 700 MHZ\n")
printf("Deviation : 20 kHzZ\n");
printf("EXT2 and AC coupling are selected\n")
printf("\n"); /1l Prints a carrage return
/1 Close the sessions
vi C ose(vi);
vi Cl ose(defaul tRV;
}

Generating an Internal FM Signal Using VISA and C

In this example the VISA library is used to generate an internal FM signal at a carrier frequency of
900 MHz and a power level of —15 dBm. The FM rate will be 5 kHz and the peak deviation will be
100 kHz. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file. vi saex6. cpp performs the following functions:

¢ error checking

* resets the signal generator

¢ sets up the signal generator for FM path 2 and internal FM rate of 5 kHz
e sets up FM path 2 deviation to 100 kHz

¢ sets carrier frequency to 900 MHz

¢ sets the power level to -15 dBm

e turns on frequency modulation and RF output

The following program example is available on the signal generator Documentation CD-ROM as
visaex6.cpp.

[Rk R kKR R R R KKk kR R KRR R R KKK kR KRRk KR KRR KRR KR K R R KRk R R KKk R
/1 PROGRAM FI LE NAME: vi saex6. cpp

11

/1 PROGRAM DESCRI PI ON: Thi s exanpl e generates an internal FMsignal at a 900

Il MHz carrier frequency and a power |evel of -15 dBm The FMrate is 5 kHz and the peak
/'l deviation 100 kHz

11

[] KKKk k ok ok ok k ok ok kkk ok kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkhkkkhkkkkkkkkkkk kK Kk

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i nclude <iostrean»
#i nclude <stdlib. h>

Agilent E8663B Analog Signal Generator Programming Guide 71

Programming Examples
GPIB Programming Interface Examples

#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM vi; /| Decl ares variabl es of type Vi Session
/1 for instrunent communication

Vi Status vi Status = 0; /1 Declares a variable of type ViStatus

/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &lefaul tRM; // Initialize VISA session

/1 open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 1f problems, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC-coupled FM signal\n");

printf("\n");
printf("Press any key to continue\n");
getch();
viCear(vi); /'l Cears the signal generator
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
VviPrintf(vi, "FM2:INT: FREQ 5 kHz\n"); // Sets FMpath 2 to internal at a nodulation rate of 5 kHz
viPrintf(vi, "FM2:DEV 100 kHz\n"); /'l Sets FM path 2 nodul ation deviation rate of 100 kHz
VviPrintf(vi, "FREQ 900 MHz\n"); /'l Sets carrier frequency to 900 MHz
viPrintf(vi, "POW-15 dBmn"); /'l Sets the power |evel to -15 dBm
viPrintf(vi, "FM2:STAT ON\\n"); /1 Turns on frequency nodul ation
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns on RF out put
printf("\n"); /'l Prints a carriage return
/1 Print user infornation
printf("Power level : -15 dBmn");

printf("FMstate : on\n");

printf("RF output : on\n");
printf("Carrier Frequency : 900 MHZ\n");
printf("Deviation : 100 kHZ\n");
printf("Internal nodulation : 5 kHz\n");
pr

ntf("\n"); /1 Print a carrage return
/1 Close the sessions
vi O ose(vi);

72 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

vi Cl ose(defaul tRM ;
}

Generating a Step-Swept Signal Using VISA and C++

In this example the VISA library is used to set the signal generator for a continuous step sweep on
a defined set of points from 500 MHz to 800 MHz. The number of steps is set for 10 and the dwell
time at each step is set to 500 ms. The signal generator will then be set to local mode which allows
the user to make adjustments from the front panel. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. vi saex7. cpp performs the following
functions:

¢ clears and resets the signal generator

e sets up the instrument for continuous step sweep
* sets up the start and stop sweep frequencies

¢ sets up the number of steps

¢ sets the power level

¢ turns on the RF output

The following program example is available on the signal generator Documentation CD-ROM as
vi saex7. cpp.

//**
/1 PROGRAM FI LE NAME: vi saex7. cpp

11

/1 PROGRAM DESCRI PTI ON: This exanple will programthe signal generator to performa step

/1 sweep from 500-800 MHz with a .5 sec dwell at each frequency step.

I

[KKKk ok k ok ok ok k ok ok ok k ok ok kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkhkhkhkkhkkkhkkkkkkkkkkk kK ok

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»

void main ()

{

Vi Session defaul tRM vi;// Declares variables of type ViSession

/1 vi establishes instrument communication

Vi Status viStatus = 0;// Declares a variable of type Vi Status
/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &defaul tRM; // Initialize VISA session

/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI _NULL, &vi);
if(viStatus){// If problens, then pronpt user

Agilent E8663B Analog Signal Generator Programming Guide 73

Programming Examples
GPIB Programming Interface Examples

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viCear(vi); /'l Cears the signal generator
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
VviPrintf(vi, "*CLS\n"); Il Cears the status byte register
viPrintf(vi, "FREQ MODE LI ST\n"); /'l Sets the sig gen freq node to |ist
Vi Printf(vi, "LIST: TYPE STEP\n"); I/ Sets sig gen LIST type to step

viPrintf(vi, "FREQ STAR 500 MHz\n"); // Sets start frequency
viPrintf(vi, "FREQ STOP 800 MHz\n"); // Sets stop frequency

viPrintf(vi, "SWE:PO N 10\n"); /'l Sets nunber of steps (30 nHz/step)
VviPrintf(vi, "SWEDWEL .5 S\n"); I/ Sets dwell tine to 500 ns/step
VviPrintf(vi, "PONAWPL -5 dBmn"); /'l Sets the power |evel for -5 dBm
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns RF output on
ViPrintf(vi, "INIT: CONT O\\n"); /1 Begins the step sweep operation
/1 Print user information
printf("The signal generator is in step sweep node. The frequency range is\n");
printf("500 to 800 nHz. There is a .5 sec dwell tine at each 30 nHz step.\n");
printf("\n"); Il Prints a carriage return/line feed
vi Printf(vi, "OUTP: STAT OFF\n"); /1 Turns the RF output off

printf("Press the front panel Local key to return the\n");
printf("signal generator to manual operation.\n");

/1 Closes the sessions
printf("\n");
vi G ose(vi);
vi Cl ose(defaul tRM;
}

Generating a Swept Signal Using VISA and Visual C++

This example sets up the signal generator for a frequency sweep from 1 to 2 GHz with 101 points
and a .01 second dwell period for each point. A loop is used to generator 5 sweep operations. The
signal generator triggers each sweep with the : | N T command. There is a wait introduced in the loop
to allow the signal generator to complete all operations such as set up and retrace before the next
sweep is generated. vi saex1l. cpp performs the following functions:

¢ sets up the signal generator for a 1 to 2 GHz frequency sweep
e sets up the signal generator to have a dwell time of .01 seconds and 101 points in the sweep
¢ sleep function is used to allow the instrument to complete its sweep operation

74 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples

GPIB Programming Interface Examples

The following program example is available on the signal generator Documentation CD-ROM as
vi saex11. cpp.

INEASEASA AR AR RS RS S RS eRs Rt

11
11
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
11

PROGRAM FI LE NAME: vi saex11. cpp

PROGRAM DESCRI PTI ON: This program sets up the signal generator to
sweep from1-2 GHz. A loop and counter are used to generate 5 sweeps.

Each sweep consists of 101 points with a .01 second dwell at each point.

The programuses a Sleep function to allow the signal generator to
conplete it's sweep operation before the INIT command is sent.
The Sleep function is available with the wi ndows.h header file which is

included in the project.

NOTE: Change the TCPI PO address in the instOpenString declaration to
mat ch the | P address of your signal generator.

[FF R K Rk kR kK KK KK KA K KKK KA KKK KKK KKK KK IR KKK KKK KA A KKK IR IR A KKK Ak h Kk ok *

#i nclude "stdafx. h"

#i nclude "visa.h"

#i nclude <iostrean

#i ncl ude <wi ndows. h>

void main ()

{

Vi Status stat;
Vi Sessi on defaul tRMinst;

int npoints = 101;
doubl e dwell = 0.01;
i nt intCounter=5;

char* instQpenString = "TCPI PO: : 141. 121. 93. 101: : I NSTR';

stat = vi OpenDef aul t RM &def aul t RM ;
stat = vi Open(defaul t RMinstQpenString, VI _NULL, VI _NULL, &inst);

I/ preset to start clean

stat = viPrintf(inst, "*RST\n");
I/ set power |evel for -10dBm
stat = viPrintf(inst, "POW-10DBMn");

Agilent E8663B Analog Signal Generator Programming Guide

75

Programming Examples
GPIB Programming Interface Examples

I/ set the start and stop frequency for the sweep
stat = viPrintf(inst, "FREQ START 1GHZ\n");

stat = viPrintf(inst, "FREQ STOP 2GHZ\n");

I/ setup dwell per point

stat = viPrintf(inst, "SWEEP: DNELL %\ n", dwell);

/| setup nunber of points

stat = viPrintf(inst, "SWEEP: PO NTS %\ n", npoints);

I/ set interface tinmeout to double the expected sweep tine
/1 sweep takes (~15ms + dwell) per point * nunber of points
/1 the timeout should not be shorter then the sweep, set it
/'l 1onger

long tinmeout Ms = | ong(2*npoi nts*(.015+dwel |)*1000);

/1l set the VISA tinmeout

stat = viSetAttribute(inst, VI_ATTR TMO VALUE, tineoutMs);

I/ set continuous trigger node off

stat = viPrintf(inst, "INIT: CONT OFF\n");
/'l turn |list sweep on

stat = viPrintf(inst, "FREQ MODE LIST\n");

int sweepNo = O;
whi | e(i nt Counter>0)

{
I/ start the sweep (initialize)
stat = viPrintf(inst, "INNT\n");
printf("Sweep %l started\n", ++sweepNo) ;
/'l wait for the sweep conpletion with *OPC?
int res ;
stat = viPrintf(inst, "*OPC?\n");
stat = vi Scanf (inst, "%l", &res);
/1 handl e possible errors here (npst likely a tineout)
/1 err_handler(inst, stat);
put s(" Sweep ended");
/1 delay before sending next INIT since instrunent
/1 may not be ready to receive it yet
Sl eep(15);

i nt Counter = intCounter-1;
}

printf("End of Programin\n");

76 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

}
Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These settings
can then be recalled separately; either from the keyboard or from the signal generator’s front panel.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. vi saex8. cpp performs the following functions:

¢ error checking

¢ clears the signal generator

* resets the status byte register

* resets the signal generator

* sets up the signal generator frequency, ALC off, power level, RF output on

¢ checks for operation complete

e saves to settings to instrument register number one

¢ recalls information from register number one

e prompts user input to put instrument into Local and checks for operation complete

The following program example is available on the signal generator Documentation CD-ROM as
visaex8.cpp.

[Rk R kKR R R R KRk kKR KKK KR KKK kR KRRk KR KRR KRR KR K R R KRk R R KK K
/1 PROGRAM FI LE NAME: vi saex8. cpp

11

/1 PROGRAM DESCRI PTION: I n this exanple, instrument settings are saved in the signa

Il generator's registers and then recalled

/1 Instrunent settings can be recalled fromthe keyboard or, when the signal generator
/1 is put into Local control, fromthe front panel

/1 This programwill initialize the signal generator for an instrument state, store the
/] state to register #1. An *RST command will reset the signal generator and a *RCL

/1 command will return it to the stored state. Following this renpte operation the user
/1 will be instructed to place the signal generator in Local node

11

[KKKk ok k ok ok ok k ok ok kk kK kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkhkkkhkkhkkhkkkhkkhhkkkkkkkkkkkkkk kK ok

#i ncl ude <visa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <iostrean»
#i ncl ude <coni o. h>

void main ()

{

Agilent E8663B Analog Signal Generator Programming Guide 7

Programming Examples
GPIB Programming Interface Examples

Vi Sessi on defaul tRM vi;// Declares variables of type Vi Session
Il for
Vi Status viStatus = 0;// Declares a variable of type ViStatus

instrunent conmuni cation

Il for GPIB verifications

I ong I ngDone = 0; /| Operation conplete flag
vi St at us=vi OpenDef aul t RM &def aul t RM ; Il
/1 Open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPl B::19::1NSTR',
if(viStatus){// |f problens,
printf("Could not open ViSession!\n");

Initialize VISA session

VI _NULL, WI_NULL, &vi);
then pronpt user

printf("Check instruments and connections\n");

printf("\n");

exit(0);}
printf("\n");
viCear(vi); /1 Cears the signal generator
ViPrintf(vi, "*CLS\n"); /'l Resets the status byte register

/'l Print user information
*SAV, *RCL SCPI
an instrunent's state\n");

printf("Programm ng exanpl e using the commands\ n");

printf("used to save and recall

printf("\n");
ViPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "FREQ 5 MHz\n"); /'l Sets sig gen frequency
viPrintf(vi, "POWNWALC OFF\n"); /'l Turns ALC O f
VviPrintf(vi, "PONAWPL -3.2 dBmn"); // Sets power for -3.2 dBm
Vi Printf(vi, "OUTP: STAT O\\n"); /1 Turns RF output On
viPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"% ", & ngDone) ; /1 Waits for setup to conplete
VviPrintf(vi, "*SAV 1\n"); /| Saves sig gen state to register #1

/1 Print user information

printf("The current signal generator operating state will be saved\n");

printf("to Register #1. Cbserve the state then press Enter\n");

printf("\n"); /1 Prints new |ine character
getch(); /1 Wait for user input
| ngDone=0; /'l Resets the operation conplete flag
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"% ", & ngDone) ; /1 Waits for setup to conplete

11

printf("The instrunent

is nowinit's Reset operating state.

Print user infromation
Press the\n");

78

Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("Enter key to return the signal generator to the Register #1 state\n");
printf("\n"); /1 Prints new |ine character
getch(); /1 Waits for user input
| ngDone=0; /'l Reset the operation conplete flag
VviPrintf(vi, "*RCL 1\n"); /'l Recalls stored register #1 state
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)
vi Scanf (vi ,"% ", & ngDone); /1 Waits for setup to conplete

/1 Print user information
printf("The signal generator has been returned to it's Register #1 state\n");
printf("Press Enter to continue\n");

printf("\n"); /1 Prints new |ine character
getch(); /1 Waits for user input
| ngDone=0; /| Reset the operation conplete flag
VviPrintf(vi, "*RST\n"); /'l Resets the signal generator
ViPrintf(vi, "*OPC\n"); /| Checks for operation conplete
whil e (!l ngDone)

vi Scanf (vi ,"% ", & ngDone); /1 Waits for setup to conplete

/1 Print user information
printf("Press Local on instrunent front panel to return to manual node\n");
printf("\n"); /'l Prints new |ine character

/1 Close the sessions
vi C ose(vi);

vi Cl ose(defaul tRV;
}

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is read. You will be asked to
set up the signal generator for error generating conditions. The data questionable status register will
be read and the program will notify the user of the error condition that the setup caused. Follow the
user prompts presented when the program runs. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. vi saex9. cpp performs the following
functions:

¢ error checking

¢ clears the signal generator

* resets the signal generator

* the data questionable status register is enabled to read an unleveled condition

e prompts user to manually set up the signal generator for an unleveled condition

¢ queries the data questionable status register for any set bits and converts the string data to
numeric

* based on the numeric value, program checks for a corresponding status check value

¢ similarly checks for over or undermodulation condition

The following program example is available on the signal generator Documentation CD-ROM as
vi saex9. cpp.

Agilent E8663B Analog Signal Generator Programming Guide 79

Programming Examples
GPIB Programming Interface Examples

[FF R R K Kk kA kR K Kk KKK KKK Rk KA K KKK KKK KKK IR KKK KKK A KA KKK IR A KA KKK KK KKK KA K KA KKKk h Kk x*

/1 PROGRAM NAME: vi saex9. cpp

11

/1 PROGRAM DESCRI PTION: In this exanple, the data questionable status register is read.
/1 The data questionable status register is enabled to read an unlevel ed condition.

/1 The signal generator is then set up for an unlevel ed condition and the data

/'l questionable status register read. The results are then displayed to the user.

/1 The status questionable register is then setup to nonitor a nodul ation error condition.
/'l The signal generator is set up for a nodulation error condition and the data

/1 questionabl e status register is read.

/1l The results are displayed to the active wi ndow.

11

[FF R KK Kk kA kKK R K KA K KKK Rk KA K KKK R A KA KKK IR A KA KKK KA A KA KKK IR A KA KKK A A KKK KR A KKK KAk h Kk x*

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostrean»
#i ncl ude <conio. h>

void main ()

{

Vi Session defaul tRM vi;// Declares a variables of type Vi Session
/1 for instrument communication

Vi Status viStatus = 0;// Declares a variable of type ViStatus

/1l for GPIB verifications

int nunv0;// Declares a variable for switch statements

char rdBuffer[256] ={0}; Il Declare a variable for response data

vi St at us=vi OpenDef aul t RM &def aul t RM) ; /1 Initialize VISA session
/1 Open session to GPIB device at address 19

vi St at us=vi Open(defaul tRM "GPIB::19::INSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ I/ |f problems, then pronpt user
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viCear(vi);// Cears the signal generator

/1l Prints user infornation

printf("Programm ng exanple to denpbnstrate reading the signal generator's
Status Byte\n");

80 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("\n");

printf("Manually set up the sig gen for an unlevel ed output condition:\n");
printf("* Set signal generator output anplitude to +20 dBmin");

printf("* Set frequency to maximum val ue\n");

printf("* Turn On signal generator's RF Qutput\n");

printf("* Check signal generator's display for the UNLEVEL annunciator\n");
printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); /1 Waits for keyboard user input

Vi Printf(vi, "STAT: QJES: PONW ENAB 2\ n"); /1 Enabl es the Data Questionabl e
/| Power Condition Register Bits
// Bits '0" and '1'

Vi Printf(vi, "STAT: QUES: PON COND?\ n"); /1 Querys the register for any
/1l set bits

vi Scanf (vi, "%", rdBuffer); // Reads the decimal sum of the
/1l set bits

nune(int (rdBuffer[1]) -('0")); /1 Converts string data to

/'l nuneric

switch (num /1 Based on the decinmal val ue
{

case 1:
printf("Signal Generator Reverse Power Protection Tripped\n");
printf("/n");
br eak;

case 2:
printf("Signal Generator Power is Unleveled\n");
printf("\n");
br eak;

defaul t:
printf("No Power Unlevel ed condition detected\n");
printf("\n");
}
viCear(vi); /1 Clears the signal generator

/1 Prints user infornation

[LA e I \n");
printf("\n");
printf("Manually set up the sig gen for an unlevel ed output condition:\n");
printf("\n");
printf("* Select AM nodul ation\n");
printf("* Select AM Source Ext 1 and Ext Coupling AC\n");

Agilent E8663B Analog Signal Generator Programming Guide 81

Programming Examples
GPIB Programming Interface Examples

printf("* Turn On the nodul ation.\n");

printf("* Do not connect any source to the input\n");

printf("* Check signal generator's display for the EXT1 LO annunci ator\n");

printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); /1 Waits for keyboard user input

viPrintf(vi, "STAT: QUES: MOD: ENAB 16\n"); // Enables the Data Questionable
// Mbdul ati on Condition Register

/1l bits '0',"1,"2","3" and '4

vi Printf(vi, "STAT: QUES: MOD: COND?\ n") ; /'l Querys the register for any
/1l set bits

vi Scanf (vi, "%", rdBuffer); /1 Reads the decimal sum of the
/1l set bits

nune(int (rdBuffer[1]) -('0")); // Converts string data to nuneric

switch (num /1 Based on the deci nmal val ue

{

case 1:
printf("Signal Generator Mdulation 1 Undernod\n");

printf("\n");
br eak;
case 2:
printf("Signal Generator Mdulation 1 Overnod\n");
printf("\n");
br eak;
case 4:

printf("Signal Generator Mdulation 2 Undernod\n");

printf("\n");
br eak;
case 8:
printf("Signal Generator Mdulation 2 Overnod\n");
printf("\n");
br eak;
case 16:

printf("Signal Generator Mdulation Uncalibrated\n");
printf("\n");
br eak;

defaul t:
printf("No Problens with Mdul ation\n");
printf("\n");
}

82 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

/1 Close the sessions
vi Cl ose(vi);
vi Cl ose(defaul tRV;

Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the
computer can attend to other tasks while the signal generator is busy performing a function or
operation. When the signal generator finishes its operation, or detects a failure, then a Service
Request can be generated. The computer will respond to the SRQ and, depending on the code, can
perform some other operation or notify the user of failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation is in
progress, prints out a series of asterisks. When the step sweep operation is complete, an SRQ is
generated and the printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file. vi saex10. cpp performs the following functions:

e error checking

¢ clears the signal generator

* resets the signal generator

¢ prompts user to manually begin the step sweep and waits for response

¢ clears the status register

¢ sets up the operation status group to respond to an end of sweep

¢ the data questionable status register is enabled to read an unleveled condition

e prompts user to manually set up the signal generator for an unleveled condition

* queries the data questionable status register for any set bits and converts the string data to
numeric

* based on the numeric value, program checks for a corresponding status check value

¢ similarly checks for over or undermodulation condition

The following program example is available on the signal generator Documentation CD-ROM as
vi saex10. cpp.

[R R R kKR kR R KKk R R KRR kR KK K KRR KRR KRRk R R KK R R KKK
11

/1 PROGRAM FI LE NAME: vi saex10. cpp

11

/1 PROGRAM DESCRI PTI ON: This exanpl e denponstrates the use of a Service Request (SRQ

/1 interrupt. The program sets up conditions to enable the SRQ and then sets the signal
/1 generator for a step node sweep. The programw || enter a printing | oop which prints
/1 an * character and ends when the sweep has conpl eted and an SRQ received.

11

[] RFE KKKk k ok ok k ok ok ok kkkkkkkkkkkkkkkkkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkhkkkk kK k ok

Agilent E8663B Analog Signal Generator Programming Guide 83

Programming Examples
GPIB Programming Interface Examples

#i nclude "visa.h"

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i ncl ude "w ndows. h"
#i ncl ude <coni o. h>

#define MAX_CNT 1024

int sweep=1; // End of sweep flag

/* Prototypes */

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType eventType, ViEvent event, Vi Addr addr);

int min ()

{

Vi Session defaul tRM vi;// Declares variables of type ViSession

/1 for instrument conmmunication

Vi Status vi Status = 0;// Declares a variable of type ViStatus
/1 for GPIB verifications

char rdBuffer[MAX_CNT];// Declare a block of nmenory data

vi St at us=vi OpenDef aul t RM &lefaul tRM;// Initialize VISA session
if(viStatus < VI_SUCCESS){// |f problenms, then pronpt user
printf("ERROR initializing VISA... exiting\n");
printf("\n");
return -1;}

/1 Open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problems then pronpt user

printf("ERROR Could not open communication with
i nstrunent\n");

printf("\n");
return -1;}

viCear(vi); /'l Clears the signal generator
VviPrintf(vi, "*RST\n"); /'l Resets signal generator

/1 Print program header and infornmation
printf("** End of Sweep Service Request **\n");
printf("\n");

printf("The signal generator will be set up for a step sweep npde
operation.\n");

printf("An "*’ will be printed while the instrument is sweeping. The end of
\n");

84 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("sweep will be indicated by an SRQ on the GPIB and the programwil |
end.\n");

printf("\n");

printf("Press Enter to continue\n");
printf("\n");

getch();

ViPrintf(vi, "*CLS\n");// Clears signal generator status byte

Vi Printf(vi, "STAT: OPER NTR 8\n");// Sets the Operation Status Group // Negative Transition Filter to
indicate a // negative transition in Bit 3 (Sweeping)

/1 which will set a corresponding event in // the Operation Event Register. This occurs // at the end
of a sweep.

viPrintf(vi, "STAT: OPER PTR 0\n");// Sets the Operation Status Group // Positive Transition Filter so
that no

/1 positive transition on Bit 3 affects the // Operation Event Register. The positive // transition
occurs at the start of a sweep.

viPrintf(vi, "STAT: OPER ENAB 8\n");// Enabl es Operation Status Event Bit 3 // to report the event to
Status Byte // Register Summary Bi t

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Sunmary Bit 7
/1 The next line of code indicates the // function to call on an event

vi Status = vilnstall Handl er (vi, VI_EVENT_SERVI CE_REQ interupt, rdBuffer);
/1 The next line of code enables the // detection of an event

vi Status = vi Enabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI _HNDLR, VI _NULL);

viPrintf(vi, "FREQ MODE LIST\n");// Sets frequency node to |ist
VviPrintf(vi, "LIST: TYPE STEP\n");// Sets sweep to step

ViPrintf(vi, "LIST: TRIG SOUR IMMn");// Imrediately trigger the sweep
viPrintf(vi, "LIST: MODE AUTONn");// Sets node for the |ist sweep
viPrintf(vi, "FREQ STAR 40 MHZ\n"); // Start frequency set to 40 Mz
viPrintf(vi, "FREQ STOP 900 MHZ\n");// Stop frequency set to 900 Mz
ViPrintf(vi, "SWE:PON 25\n");// Set nunber of points for the step sweep
ViPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point

ViPrintf(vi, "IINIT: CONT OFF\n");// Set up for single sweep
VviPrintf(vi, "TRIG SOUR IMMAn");// Triggers the sweep
viPrintf(vi, "INNT\n"); // Takes a single sweep
printf("\n");

/1 \WWile the instrument is sweeping have the
/1 program busy with printing to the display.
/1 The Sleep function, defined in the header
/1 file windows.h, wll pause the program

/'l operation for .5 seconds

whil e (sweep==1){

printf("*");

Sl eep(500) ; }

printf("\n");

Agilent E8663B Analog Signal Generator Programming Guide 85

Programming Examples
GPIB Programming Interface Examples

/1 The following lines of code will stop the

/'l events and cl ose down the session

vi St at us
vi St at us

vi St at us
vi St at us
return O;

/1 The follow ng function is called when an SRQ event

vi Di sabl eEvent (vi, VI _ALL_ENABLED EVENTS, VI _ALL_MECH) ;
VI _EVENT_SERVI CE_REQ, i nterupt,

vi Uni nstal | Handl er (vi,

vi Cl ose(vi);
vi Cl ose(defaul tRM ;

rdBuffer);

occurs. Code specific to your

/1 requirenents woul d be entered in the body of the function.

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType eventType, ViEvent event, Vi Addr
addr)

{

Vi St at us st at us;
Viu nt16 stb;

status =

vi ReadSTB(vi ,

&sthb);// Reads the Status Byte

sweep=0;// Sets the flag to stop the "*' printing

printf("\n");// Print user
printf("An SRQ
vi Cl ose(event);// Coses the event

return VI _SUCCESS;

}

i nformation
i ndi cating end of sweep has occurred\n");

86

Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

LAN Programming Interface Examples

NOTE Before using the LAN examples: The LAN programming examples in this section demonstrate
the use of VXI-11 and Sockets LAN to control the signal generator. For details on using FTP
and TELNET refer to “Using FTP” on page 36 and “Using Telnet LAN” on page 32 of this
guide.

To use these programming examples you must change references to the IP address and
hostname to match the IP address and hostname of your signal generator.

¢ “VXI-11 Programming Using SICL and C++” on page 88
e “VXI-11 Programming Using VISA and C++” on page 89
¢ “Sockets LAN Programming and C” on page 91

¢ “Sockets LAN Programming Using Java” on page 115

¢ “Sockets LAN Programming Using PERL” on page 116

For additional LAN programming examples that work with user-data files, refer to:

¢ “Save and Recall Instrument State Files” on page 158

VXI-11 Programming

The signal generator supports the VXI-11 standard for instrument communication over the LAN
interface. Agilent I0 Libraries support the VXI-11 standard and must be installed on your computer
before using the VXI-11 protocol. Refer to “Using VXI-11” on page 30 for information on configuring
and using the VXI-11 protocol.

The VXI-11 examples use TCPIPO as the board address.

Using VXI-11 with GPIB Programs

The GPIB programming examples that use the VISA library, and are listed in this section, can be
easily changed to use the LAN VXI-11 protocol by changing the address string. For example, change
the "GPIB::19::INSTR" address string to "TCPIP::hostname: INSTR" where hostname is the IP address
or hostname of the signal generator. The VXI-11 protocol has the same capabilities as GPIB. See the
section “Setting Up the LAN Interface” on page 23 for more information.

NOTE To communicate with the signal generator over the LAN interface you must enable the
VXI-11 SCPI service. For more information, refer to “Configuring the DHCP LAN” on
page 25.

Agilent E8663B Analog Signal Generator Programming Guide 87

Programming Examples
LAN Programming Interface Examples

VXI-11 Programming Using SICL and C++

CAUTION Because of the potential for portability problems, running Agilent SICL without the
VISA overlay is not recommended by Agilent Technologies.

The following program uses the VXI-11 protocol and SICL to control the signal generator. Before
running this code, you must set up the interface using the Agilent I0 Libraries I0 Config utility.
vXxi si cl . cpp performs the following functions:

* sets signal generator to 1 GHz CW frequency
* queries signal generator for an ID string
¢ error checking

The following program example is available on the signal generator Documentation CD-ROM as
vxi si cl . cpp.

[KKKk k ok ok ok k ok ok kk ok ok kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhhkkhkkkkkkkkkkk kK ok

11

/1 PROGRAM NAME: vXi si cl . cpp

11

/1 PROGRAM DESCRI PTI ON: Sanpl e test program using SICL and the VXI-11 protocol
I

/1 NOTE: You nust have the Agilent IO Libraries installed to run this program
I

/1 This exanple uses the VXI-11 protocol to set the signal generator for a 1 gHz CW// frequency. The
signal generator is queried for operation conplete and then queried

/1 for its ID string. The frequency and ID string are then printed to the display.

11

/1 1 MPORTANT: Enter in your signal generators hostname in the instrumentNane decl aration
Il where the "xxxxx" appears.

11

[KKKk kk ok ok k ok ok kk ok ok kkkkkkkkkk ok kkkkk Kk ok kkkkkkkkkkkkkkkkkkkhkkkkkkkhkhkkhkkkhkkkkkkkkkkk kK ok

#i nclude "stdafx. h"
#i nclude <sicl.h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>

int main(int argc, char* argv[])

{

I NST id; /1 Device session id
int opcResponse; /1 Variable for response flag

88 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

char instrumentName[] = "xxxxx"; // Put your instrument's hostnane here
char instNanmeBuf[256];// Variable to hold instrunent nane

char buf[256];// Variable for id string

ionerror(l_ERROR EXIT);// Register SICL error handl er

/1 Open SICL instrument handl e using VX -11 protocol

sprintf(instNanmeBuf, "lan[%]:inst0", instrumentName);

id = iopen(instNaneBuf);// Open instrunment session
itimeout(id, 1000);// Set 1 second tinmeout for operations
printf("Setting frequency to 1 Ghz...\n");

iprintf(id, "freq 1 GHz\n");// Set frequency to 1 GHz

printf("Waiting for source to settle...\n");
iprintf(id, "*opc?\n");// Query for operation conplete
iscanf(id, "%", &opcResponse); // Operation conplete flag
if (opcResponse != 1)// |f operation fails, pronpt user
{

printf("Bad response to 'OPC?'\n");

iclose(id);

exit(1);
}
iprintf(id, "FREQ?An");// Query the frequency
iscanf(id, "%", &buf);// Read the signal generator frequency
printf("\n");// Print the frequency to the display
printf("Frequency of signal generator is %\n", buf);
ipromptf(id, "*IDN?\n", "%", buf);// Query for id string
printf("Instrument ID: %\n", buf);// Print id string to display
iclose(id);// Cose the session

return O;

}
VXI-11 Programming Using VISA and C++

The following program uses the VXI-11 protocol and the VISA library to control the signal generator.
The signal generator is set to a -5 dBm power level and queried for its ID string. Before running this
code, you must set up the interface using the Agilent IO Libraries I0 Config utility. vXi vi sa. cpp
performs the following functions:

* sets signal generator to a -5 dBm power level
* queries signal generator for an ID string
¢ error checking

The following program example is available on the signal generator Documentation CD-ROM as
VXi vi sa. cpp.

Agilent E8663B Analog Signal Generator Programming Guide 89

Programming Examples
LAN Programming Interface Examples

[FF KA K Kk kK kK KK R kKA KK KKK Kk A A K A KK R KKK KA KK Ak AR KR KKK A KKK KKK A KR K IR A KA KKK KA AR A KK IR AKX Kk

11
11
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il

PROGRAM FI LE NAME: vxi vi sa. cpp
Sanpl e test programusing the VISA libraries and the VXI-11 protocol

NOTE: You nust have the Agilent Libraries installed on your conputer to run

this program

PROGRAM DESCRI PTI ON: Thi s exanpl e uses the VXI-11 protocol and VISA to query
the signal generator for its ID string. The ID string is then printed to the
screen. Next the signal generator is set for a -5 dBm power |evel and then

queried for the power level. The power level is printed to the screen.

| MPORTANT: Set up the LAN Client using the 10 Config utility

[RF KKK Kk kK kK KK R kKA KK KKK Ak A A K KKK R KKK KA KKK A IR K IR KKK KA KA KA A IR K IR AKX KKK KA KK A KKK I AKX Kk

#i nclude <visa. h>

#i nclude <stdio. h>
#i nclude " St dAf x. h"
#include <stdlib. h>

#i ncl ude <coni 0. h>

#def i ne MAX_COUNT 200

int

mai n (void)

Vi Status status;// Declares a type Vi Status variable

Vi Session defaul tRM instr;// Declares a type Vi Session variable
Viunt32 retCount;// Return count for string I/O
Vi Char buffer[MAX_COUNT];// Buffer for string I/O

status = vi OpenDef aul t RM &def aul t RV ; /Il Initialize the system

// Open communi cation with Serial
Il Port 2

status = vi Open(defaul tRM "TPCI PO::19::INSTR', VI_NULL, WVI_NULL, & nstr);

if(status){ /'l |f problens then pronpt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");
printf("\n");

90

Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

exit(0);}
/1 Set timeout for 5 seconds
vi Set Attribute(instr, VI_ATTR_ TMO VALUE, 5000);
/1l Ask for sig gen ID string
status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

/! Read the sig gen response
status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0"; /1 Indicate the end of the string
printf("Signal Generator ID="); /1l Print header for ID
printf(buffer); /1 Print the ID string
printf("\n"); /'l Print carriage return

/1 Flush the read buffer

/'l Set sig gen power to -5dbm
status = viWite(instr, (ViBuf)"PONAWL -5dbmn", 15, &retCount);

/'l Query the power |evel
status = viWite(instr, (ViBuf)"PON\n",5, & etCount);

/'l Read the power |evel
status = vi Read(instr, (ViBuf)buffer, MAX COUNT, &retCount);

buffer[retCount]= "\0"; /'l Indicate the end of the string
printf("Power level ="); /1 Print header to the screen
printf(buffer); /1 Print the queried power |evel
printf("\n");

status = vi Cl ose(instr); /1 Close down the system

status = vi Cl ose(defaul tRV;
return O;

}
Sockets LAN Programming and C

The program listing shown in “Queries for Lan Using Sockets” on page 94 consists of two files; lanio.c
and getopt.c. The lanio.c file has two main functions; i nt main() and an i nt nai n1().

The i nt mai n() function allows communication with the signal generator interactively from the
command line. The program reads the signal generator's hostname from the command line, followed
by the SCPI command. It then opens a socket to the signal generator, using port 5025, and sends the
command. If the command appears to be a query, the program queries the signal generator for a
response, and prints the response.

The i nt mai n1(), after renaming to i nt mai n(), will output a sequence of commands to the signal
generator. You can use the format as a template and then add your own code.

This program is available on the signal generator Documentation CD-ROM as | ani o. c.

Sockets on UNIX

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only

Agilent E8663B Analog Signal Generator Programming Guide 91

Programming Examples
LAN Programming Interface Examples

difference is the openSocket () routine, which uses a few network library routines to create the
TCP/IP network connection. Once this connection is created, the standard fread() and fwite()
routines are used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example, / users/ nydir/.
2. At the UNIX prompt in your home directory type: cc -Aa -O -0 lanio lanio.c

3. At the UNIX prompt in your home directory type: ./l ani 0 xxxxx “*| DN?” where XXXXX is the
hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.

The i nt mai n1() function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1. Rename the lanio.c int mainl() to int main() and the original int main() to int nainl().

2. In the mai n(), openSocket () function, change the “your hostname here” string to the hostname
of the signal generator you want to control.

3. Resave the lanio.c program.

4. At the UNIX prompt type: cc -Aa -O -0 lanio lanio.c

5. At the UNIX prompt type: ./l ani o

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX

display will show a display similar to the following:

uni x machi ne: /users/nydir
$./lanio
ID Agilent Technol ogi es, E4438C, US70000001, C. 02.00

Frequency: +2. 5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on
sockets. The following steps outline the process for running the interactive program in the Microsoft
Visual C++ 6.0 environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of
the Visual C++ project.

NOTE The int main() function in the lanio.cpp file will allow commands to be sent to the signal
generator in a line-by-line format; the user types in SCPI commands. The int main1(0)
function can be used to output a sequence of commands in a “program format.” See
Programming Using mainl() Function below.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The Debug window will appear with
a prompt “Press any key to continue.” This indicates that the program has compiled and can be
used to send commands to the signal generator.

92 Agilent E8663B Analog Signal Generator Programming Guide

3.
4.

6.

Programming Examples
LAN Programming Interface Examples

Click Start, click Programs, then click Command Prompt. The command prompt window will appear.

At the command prompt, cd to the directory containing the lanio.exe file and then to the Debug
folder. For example C \ Socket | O Lani o\ Debug.

After you cd to the directory where the lanio.exe file is located, type in the following command at
the command prompt: | ani 0 xxxxx “*1 DN?”. For example:

C. \ Socket | O Lani o\ Debug>l ani 0 xxxxx “*| DN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in a line by
line format from the command prompt.

Type exit at the command prompt to quit the program.

Programming Using main1() Function

The i nt mai n1() function will output a sequence of commands in a program format. If you want to
run a program using a sequence of commands then perform the following:

1.

3.

Enter the hostname of your signal generator in the openSocket function of the mai n1() function
of the lanio.cpp program.

Rename the lanio.cpp i nt mai n1() function to i nt mai n() and the original i nt mai n() function
to int mainl().

Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display results similar to those shown in Figure 3-1.

Figure 3-1 Program Output Screen

& "C:\GPIB\Test\lanio\Debug\Lanio.exe"
ID: Agilent Technologies, E8663B, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Press any key to continue_

A An

Agilent E8663B Analog Signal Generator Programming Guide 93

Programming Examples
LAN Programming Interface Examples

Queries for Lan Using Sockets

| ani 0. ¢ and get opt. ¢ perform the following functions:

establishes TCP/IP connection to port 5025

resultant file descriptor is used to “talk” to the instrument using regular socket I/O mechanisms

maps the desired hostname to an internal form

error checks

queries signal generator for ID

sets frequency on signal generator to 2.5 GHz

sets power on signal generator to -5 dBm

gets option letter from argument vector and checks for end of file (EOF)

The following programming examples are available on the signal generator Documentation CD-ROM as
| ani 0. ¢ and getopt. c.

[H Rk Kk K Kk Rk KA K KKK KK KA A KKK KR K KA KKK IR A K A KKK A K KA IR KK KKK KKK KA KKK IR AKX Kk

*

*

*

$Header: | anio.c 04/24/01
$Revision: 1.1 $

$Dat e: 10/ 24/01

PROGRAM NAME: | anio.c

$Descri ption: Functions to talk to an Agilent

si gnal generator

via TCP/IP. Uses conmand-|ine argunents.

A TCP/I P connection to port 5025 is established and

the resultant file descriptor is used to "talk" to the

i nstrunment using regul ar socket

Exanpl es:

Query the signal generator frequency:
| ani o xx.xxx.xx.x ' FREQ?'

Query the signal generator power |evel:

' ani 0 xx. xxx.xx.x ' POAP'

Check for errors (gets one error):

| ani 0 xX. XXX.xx.x ‘'syst:err?

I/ O mechani sms. $

Send a list of coomands froma file, and nunmber them

94

Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

* cat scpi_cnmds | lanio -n XX.XXX. XX. X

*
PR R R R R R R R R

*

* This program conpiles and runs under

* - HP-UX 10.20 (UNIX), using HP cc or gcc:

* + cc -Aa -O-o0 lanio lanio.c

* + gcc -Vall -O-o0 lanio lanio.c

*

* - Wndows 95, using Mcrosoft Visual C++ 4.0 Standard Edition

* - Wndows NT 3.51, using Mcrosoft Visual C++ 4.0

* + Be sure to add WSOCK32.LIB to your list of libraries!
* + Conpile both lanio.c and getopt.c

* + Consider re-naming the files to |anio.cpp and getopt.cpp

* Considerations:

* - On UNIX systens, file |I/O can be used on network sockets.

* Thi s makes programm ng very conveni ent, since routines |ike

* getc(), fgets(), fscanf() and fprintf() can be used. These

* routines typically use the |ower level read() and wite() calls.

*

* - In the Wndows environnment, file operations such as read(), wite(),
* and cl ose() cannot be assuned to work correctly when applied to

* sockets. Instead, the functions send() and recv() MJST be used.

KR KKk KKK KKK KKK A K KKK KKK KA IR KKK KA KK A IR A K I KA KKK KA KKK IR A KA KKK KKK A KKK XA KAk [

/* Support both Wn32 and HP-UX UNI X environnent */

#i fdef _WN32 /* Visual C++ 6.0 will define this */
define W NSOCK
#endi f

#i f ndef W NSOCK
ifndef _HPUX_SOURCE
define _HPUX_SOURCE

endif

#endi f

#i nclude <stdio. h> /* for fprintf and NULL */
#i nclude <string. h> /* for mencpy and nenset */
#include <stdlib. h> /* for malloc(), atol () */
#i ncl ude <errno. h> /* for strerror */

Agilent E8663B Analog Signal Generator Programming Guide 95

Programming Examples
LAN Programming Interface Examples

#i f def W NSOCK

#i ncl ude <wi ndows. h>

ifndef _W NSOCKAPI _

include <wi nsock.h> // BSDstyle socket functions
endi f

#el se /* UNIX with BSD sockets */

include <sys/socket.h> /* for connect and socket*/

include <netinet/in.h> /* for sockaddr_in */
i ncl ude <netdb. h> /* for gethostbynanme */

define SOCKET_ERROR (-1)
define | NVALI D_SOCKET (-1)

typedef int SOCKET;

#endif /* WNSOCK */

#i f def W NSOCK
/* Declared in getopt.c. See exanple prograns disk. */
extern char *optarg;
extern int optind;
extern int getopt(int argc, char * const argv[], const char* optstring);
#el se
include <unistd.h> /* for getopt(3C) */
#endi f

#define COWAND_ERROR (1)
#define NO_CMD_ERROR (0)

#define SCPI _PORT 5025
#define | NPUT_BUF_SI ZE (64*1024)

[RA KA KK Kk kA K KKK KA KA KKK KKK KA KKK IR KKK KA KKK KA KKK IR A KA KKK AR KKK KKK A AKX KK Ak

* Display usage

KKKk KKK KKK KK KK KKK KKK A A KKK IR A KA KKK KKK KA KKK KR AR KKK KA KKK KKK KA KKK Fh Kk [

96 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

static void usage(char *basenane)

{
fprintf(stderr,"Usage: % [-nqu] <hostname> [<conmand>]\n", basenane);
fprintf(stderr,” % [-nqu] <hostname> < stdin\n", basenane);
fprintf(stderr," -n, nunber output lines\n");
fprintf(stderr,"” -q, quiet; do NOT echo lines\n");
fprintf(stderr,"” -e, show nessages in error queue when done\n");

}

#i f def W NSOCK

int init_w nsock(void)

{
WORD wWer si onRequest ed;
WBADATA wsaDat a;
int err;
wWer si onRequest ed = MAKEWORD(1, 1);
wWer si onRequest ed = MAKEWORD(2, 0);
err = WBASt artup(wer si onRequest ed, &wsaDat a) ;
if (err 1=0) {
/* Tell the user that we couldn't find a useable */
/* winsock.dll. */
fprintf(stderr, "Cannot initialize Wnsock 1.1.\n");
return -1;
}
return O;
}

int close_w nsock(void)

WBAC eanup() ;
return O;

}
#endif /* WNSOCK */

[RA KK Kk Kk K R K K KK Rk KA KK KKKk A A KR KKK KA KKK IR KA KA KKK KA KKK IR KA KKK KKK KK hx

*

Agilent E8663B Analog Signal Generator Programming Guide 97

Programming Examples
LAN Programming Interface Examples

> $Function: openSocket$

* $Description: open a TCP/|P socket connection to the instrunent $

* $Paraneters: $

* (const char *) hostname Network nane of instrunent.

* This can be in dotted decimal notation.
* (int) portNumber The TCP/IP port to talk to.

* Use 5025 for the SCPI port.

*

* $Return: (int) Afile descriptor sinmilar to open(1).$
*

* $Errors: returns -1 if anything goes wong $

*

KR KKk KK KKK KK KA KKK KKK KKK KR KKK KKK KK IR A KA KA KKK A A KKK IR KKK KA KKK KA KKK Xk * kK [

SOCKET openSocket (const char *hostnane, int portNunber)

{
struct hostent *hostPtr;
struct sockaddr_in peeraddr_in;
SOCKET s;

nenset (&peeraddr_in, 0, sizeof(struct sockaddr_in));

[HAEF A KKK K KKK KKK KKK KKK KKK KKK KKK A K KA K KKK h Kk [

/* map the desired host nane to internal form */
/***/
host Ptr = get host byname(host nane) ;
if (hostPtr == NULL)
{
fprintf(stderr,"unable to resolve hostname ' %'\n", hostnane);
return | NVALI D_SOCKET;

[REEF KKK KK KA K KKK KKk

/* create a socket */
/*******************/
s = socket (AF_I NET, SOCK_STREAM 0);
if (s == I NVALI D_SOCKET)
{
fprintf(stderr,"unable to create socket to '%': %\n",
host nane, strerror(errno));

98 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

return | NVALI D_SOCKET;

nencpy(&eeraddr_i n. si n_addr.s_addr, hostPtr->h_addr, hostPtr->h_|l ength);
peeraddr _in.sin_famly = AF_| NET;
peeraddr _in.sin_port = htons((unsigned short)portNunber);

if (connect(s, (const struct sockaddr*)&peeraddr_in,
si zeof (struct sockaddr_in)) == SOCKET_ERROR)

{
fprintf(stderr,"unable to create socket to '%': %\n",
host nane, strerror(errno));
return | NVALI D_SOCKET;
}
return s;

[RA KR Kk Kk K KK K KK KK KA K KKK KA KA A KR KKK KA KKK IR KA KR KKK KA KKK IR KA KKK KKK h Kk x

*

\

*

*

$Functi on: commandl nstrunment $

$Description: send a SCPI command to the instrument.$

$Paraneters: $

(FILE*) file pointer associated with TCP/IP socket.
(const char *command) . . SCPI command string.

$Return: (char *) a pointer to the result string.

$Errors: returns 0 if send fails $

KR KKk KK KKK KK KA KKK KKK KKK KR KKK KA KKK F R A KA KA KKK KA KKK IR AR KKK KA KKK KKKk R A K [

int

conmandl nst r unent (SOCKET sock,

const char *conmmand)
int count;
/* fprintf(stderr, "Sending \"%\".\n", comand); */

if (strchr(command, '\n') == NULL) {
fprintf(stderr, "Warning: mssing newine on coomand %.\n", command);

Agilent E8663B Analog Signal Generator Programming Guide 99

Programming Examples
LAN Programming Interface Examples

count = send(sock, command, strlen(command),

if (count == SOCKET_ERROR) {
return COMVAND_ERROR;

return NO_CVD_ERROR;

[R AR A KK Ak kA kKKK KK KA KKK KKK KA KKK IR KKK KA KKK KA KKK IR KKK KKK KKK KKK KA I A KKK K

* recv_line(): simlar to fgets(), but uses recv()

KKKk KKK KKK R KKK KKK KKK A A KKK IR A KA KKK KA KA KKK KR KKK KKK KKK KKK KKK KKK KKK * Kk k[

char * recv_line(SOCKET sock, char * result,

{
#i fdef W NSOCK

int cur_length = 0;
int count;
char * ptr = result;

int err =1;

while (cur_length < maxLength) {
/* Get a byte into ptr */
count = recv(sock, ptr, 1, 0);

/* 1f no chars to read, stop. */
if (count < 1) {
br eak;

}

cur_length += count;

/* If we hit a newine, stop. */
if (*ptr =="\n") {

ptr++;

err = 0;

br eak;

}

ptr++;

int maxLengt h)

100

Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

*ptr = "\0";

if (err) {
return NULL;
} else {
return result;

#el se
/***
* Sinpler UNI X version, using file I/O recv() version works too.

* This denpnstrates how to use file I/O on sockets, in UN X
***/
FILE * instFile;

instFile = fdopen(sock, "r+");

if (instFile == NULL)

{
fprintf(stderr, "Unable to create FILE * structure : %\n",
strerror(errno));
exit(2);
}
return fgets(result, maxLength, instFile);
#endi f

}

[RA KR KK Kk K KK KKK Rk KA KK KKK KA A KR KKK KA KK A KKK A KKK KR K KK IR KA KKK KKK KKk x

*

\

$Function: querylnstrunent$

* $Description: send a SCPI command to the instrunent, return a response.$

* $Paraneters: $

* (FILE*) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPI command string.

* (char *result) where to put the result.

* (size_t) maxLength maxinumsize of result array in bytes.

*

* $Return: (long) The nunber of bytes in result buffer.

*

* $Errors: returns 0 if anything goes wong. $

*

Agilent E8663B Analog Signal Generator Programming Guide 101

Programming Examples
LAN Programming Interface Examples

KKKk KKK KKK Rk KA KKK KR K KA KKK KA KA K KK IR A KA I KA KKK KA KKK IR A KA KKK KA KA KKK Xk h kK [

| ong queryl nstrument (SOCKET sock,

const char *command, char *result, size_t maxLength)

I ong ch;

char tnp_buf[8];

long resul tBytes = O;
int conmand_err;

int count;

[HAE KKK KKK KA KKK KKK KK A KKK KKK KA KKK IR A KA KR KKK KA KKK IR AKX KKk x*

* Send command to signal generator
***/
conmand_err = conmmandl nstrunent (sock, command);

if (command_err) return COMWAND_ERROR;

[HA KKK KKK KA KKK IR KKK KKK KKK KA KKK F R KKK KA KKK KA KKK IR AKX KKk x*

* Read response from signal generator
**/
count = recv(sock, tnp_buf, 1, 0); /* read 1 char */

ch = tnmp_buf[0];

if ((count < 1) || (ch == EOF) || (ch =="'\n"))
{
result = "\0"; / null termnate result for ascii */

return O;

/* use a do-while so we can break out */
do
{
if (ch =="#")
{
/* binary data encountered - figure out what it is */
long nunDigits;
| ong nunBytes = 0;
/* char length[10]; */

count = recv(sock, tnp_buf, 1, 0); /* read 1 char */
ch = tnp_buf[0];
if ((count < 1) || (ch == EOF)) break; /* End of file */

102

Agilent E8663B Analog Signal Generator Programming Guide

if (ch<'0 || ch>"9") break;
nunDigits = ch - '0";

if (nunDigits)
{
/* read nunDigits bytes into result string. */
count = recv(sock, result, (int)nunDigits, 0);
result[count] = 0; /* null termnate */

nunBytes = atol (result);

i f (nunBytes)

Programming Examples
LAN Programming Interface Examples

/* unexpected char */

{
resul tBytes = 0;
/* Loop until we get all the bytes we requested. */
/* Each call seens to return up to 1457 bytes, on HP-UX 9.05 */
do {
int rcount;
rcount = recv(sock, result, (int)nunBytes, 0);
resul tBytes += rcount;
result += rcount; /* Advance pointer */
} while (resultBytes < nunBytes);
[KRRk Rk KRk kR kK Rk kR Rk Rk kR kR kR kR kR kKRR Kk
* For LAN dunps, there is always an extra trailing newine
* Since there is no EO line. For ASCI| dunps this is
* great but for binary dunps, it is not needed.
Rk Rk kAR kR kKR kR kR Rk kR Rk kR R ARk k kR kK kK Rk ok
if (resultBytes == nunBytes)
{
char junk;
count = recv(sock, & unk, 1, 0);
}
}
el se
{
/* indefinite block ... dunp til we can an extra line feed */
do
{

if (recv_line(sock, result,

maxLengt h) == NULL) break;

if (strlen(result)==1 & *result == '\n") break;

Agilent E8663B Analog Signal Generator Programming Guide

103

Programming Examples
LAN Programming Interface Examples

resul tBytes += strlen(result);

result += strlen(result);

} while (1);

}

}

el se

{
/* ASCI| response (not a binary block) */
*result = (char)ch;
if (recv_line(sock, result+1, maxLength-1) == NULL) return O;
/* REMOVE trailing newine, if present. And term nate string. */
resul tBytes = strlen(result);
if (result[resultBytes-1] == '\n') resultBytes -= 1;
result[resul tBytes] = '\0";

}

} while (0);

return resul t Bytes;

IEEASAA SRS R AR RS EES RSt Rttt
*

> $Function: showErrors$

*

* $Description: Query the SCPl error queue, until enpty. Print results. $

*

* $Return: (void)
*
***/

voi d showErrors(SOCKET sock)

{
const char * command = "SYST: ERR?\ n";

char result_str[256];

do {
queryl nstrument (sock, command, result_str, sizeof(result_str)-1);

[HH KR KK Kk K Ak KKK KKK KKK KKK KA KKK KKK KA KA KKK KA A KA KKK IR KKK KK IR AKX Kk

104 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

* Typical result_str:
* -221,"Settings conflict; Frequency span reduced."
* +0,"No error"
* Don't bother decoding.
Kok Rk R Rk kR kR Rk kR R Rk kR Rk Rk kR Rk kR kKK kR kA kK Rk kK
if (strncnp(result_str, "+0,", 3) == 0) {
/* Matched +0,"No error" */
br eak;
}
puts(result_str);
} while (1);

[RA KR Rk Kk K KK KKK KKK A K KKK KA KA KR KKK KA KKK IR KA KKK KR KKK KK IR K KKK K KKK K h Kk x

*

>

*

*

*

*

*

$Function: isQuery$
$Description: Test current SCPl command to see if it a query. $

$Return: (unsigned char) . . . non-zero if conmand is a query. O if not.

KKk KKK KKK KK KA KKK KKK KA KKK KKK KA K K I IR A KA KA KKK KA KKK IR AR K KA KKK A KKK XK * A K [

unsi gned char isQuery(char* cnd)

{

unsi gned char q = 0 ;
char *query ;

[HAE KA KKK KKK KK KKK KKK KA KKK KKK KKK KA KKK KA I K KA KKK A Ak ok kK [

/* if the command has a '?'" in it, use querylnstrunent. */
/* otherw se, sinply send the command. */
/* Actual ly, we nust be a nore specific so that */
/* marker value querys are treated as conmands. */
/* Exanple: SENS: FREQ CENT (CALCl: MARK1: X?) */
Ty
if ((query = strchr(cnd,"?")) !'= NULL)
{
/* Make sure we don't have a marker val ue query, or
* any command with a '?" followed by a ')' character.
* This kind of command is not a query fromour point of view
* The signal generator does the query internally, and uses the result.

Agilent E8663B Analog Signal Generator Programming Guide 105

Programming Examples
LAN Programming Interface Examples

[**
*
>
*

*

*
*
*

* %

int

{

*/

query++ ; /* bunp past '?' */
while (*query)

{

if (*query =="' ") /* attenpt to ignore white spc */
query++ ;

el se break ;

if (*query !'=")"")
{
q=1;

}

return q ;

B R R R R R R R R R R TR x]

$Function: main$

$Description: Read command |ine argunents, and talk to signal generator.
Send query results to stdout. $

$Return: (int) . . . non-zero if an error occurs

HH KKK KK KKK KKK KKK KKK KA KKK IR A K A KKK KA A KKK KKK KA KA KKK KA KKK KKK A KKK Xk h kK [

mai n(int argc, char *argv[])

SOCKET i nst Sock;

char *charBuf = (char *) nalloc(l NPUT_BUF_SI ZE) ;
char *basenane;

int chr;

char command[1024] ;

char *destination;

unsi gned char quiet = 0;

unsi gned char show errs = 0;

int nunber = 0;

basenane = strrchr(argv[O0], '/');

106

Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

if (basename != NULL)
basenane++ ;

el se
basenane = argv[0];

while ((chr = getopt(argc,argv, “qune")) != EOF)
switch (chr)

{
case 'q': quiet = 1; break;
case 'n': nunber = 1; break ;
case 'e': showerrs = 1; break ;
case 'u'
case '?': usage(basenane); exit(1) ;
}

/* now | ook for hostname and optional <command>*/
if (optind < argc)
{
destination = argv[optind++] ;
strcpy(command, "");
if (optind < argc)

{
while (optind < argc) {
/* <host nanme> <conmmand> provi ded; only one conmmand string */
strcat (command, argv[optind++]);
if (optind < argc) {
strcat (command, " ");
} else {
strcat (command, "\n");
}
}
}
el se
{

/*Only <hostnane> provided; input on <stdin> */

strcpy(command, "");

if (optind > argc)

{
usage(basenane) ;
exit(1);

Agilent E8663B Analog Signal Generator Programming Guide 107

Programming Examples
LAN Programming Interface Examples

}

}

el se

{
/* no hostname! */
usage(basenane) ;
exit(1);

}

[HAEE KKK KK KA KKK KKK KA KKK KR KKK KKK KK KA KKK IR KKK KKk kK hx*

/* open a socket connection to the instrunent

[HAAF A KKK KKK KK KKK KKK KA KKK KKK KKK KKK KA KKK KKK A A KKK Kk h kK [

#i f def W NSOCK
if (init_wnsock() !'=0) {
exit(1);
}
#endi f /* WNSOCK */

i nst Sock = openSocket (destination, SCPI_PORT);

if (instSock == | NVALI D_SOCKET) {
fprintf(stderr, "Unable to open socket.\n");
return 1;

}

/* fprintf(stderr, "Socket opened.\n"); */

if (strlen(command) > 0)

{

[HAE KKK KKK KK KKK KK KKK KKK KKK KA KKK IR A KKK KKK KA KKK I KKK A KK

/* if the command has a '?' in it, use querylnstrunent. */
/* otherwi se, sinply send the command. */
Ty
if (isQuery(conmmand))
{
| ong buf Bytes;
buf Byt es = queryl nstrunent (i nst Sock, conmand,
char Buf, | NPUT_BUF_SI ZE) ;
if (!'quiet)
{
fwite(charBuf, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout) ;
fflush(stdout);

108 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

}
}
el se
{
conmandl nstrunent (i nst Sock, conmand);
}
}
el se
{

/* read a line from<stdin> */
while (gets(charBuf) != NULL)

{
if (!strlen(charBuf))
continue ;
if (*charBuf == "#" || *charBuf =="'1")
continue ;

strcat (charBuf, "\n");

if (!quiet)
{
i f (nunber)
{
char nuni 10];
sprintf(num"%: ", nunber);
fwite(num strlen(num, 1, stdout);
}
fwite(charBuf, strlen(charBuf), 1, stdout) ;
fflush(stdout);

if (isQuery(charBuf))

{
| ong buf Byt es;

/* Put the query response into the sane buffer as the*/
/* command string appended after the null term nator.*/

buf Byt es = queryl nstrunent (i nst Sock, charBuf,
charBuf + strlen(charBuf) + 1,
I NPUT_BUF_SI ZE -strlen(charBuf));

Agilent E8663B Analog Signal Generator Programming Guide 109

Programming Examples
LAN Programming Interface Examples

if (!quiet)
{
fwite(" ", 2, 1, stdout)
fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout)
fflush(stdout);

}
}
el se
{
conmand! nst runent (i nst Sock, charBuf);
}

i f (nunber) nunber++;

if (show_errs) {
showEr r or s(i nst Sock) ;

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();
#el se
cl ose(i nst Sock) ;
#endi f /* WNSOCK */

return O;

/* End of lanio.cpp *

[R AR KK KK K kK KK KKK KK KA KR KKK AR A KKK KKK K KK I KA K KA KA KKK KA KR KKK KR KKK KK AKX KK [

/* $Function: mainl$ */

/* $Description: Qutput a series of SCPI commands to the signal generator */

/* Send query results to stdout. $ */
/* */
/* $Return: (int) . . . non-zero if an error occurs */
/* */

[RA KK KK Kk kKK KKK KK KA KKK KKK KA KR KKK KKK KK F KA K KA KA KKK KA KR KKK KKK KKK AKX KK [

110 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

/* Rename this int mainl() function to int main(). Re-conpile and the */
/* execute the program */

[RA KKKk Kk kKK KKK Rk KA K KKK KA KA KKK KKK A KKK I KA KKK KKK KA KKK KK KKK KA KA AKX KK [

int mainl()

{

SOCKET i nst Sock;
| ong buf Byt es;
char *charBuf = (char *) nall oc(| NPUT_BUF_SI ZE) ;

[HHEE KKK KK KA KKK I KKK A KKK IR KKK KKK KKK K KK h R Kk k[

/* open a socket connection to the instrunment*/

[HHEF KKK KK KA KKK I KK I I A KKK IR KKK KKK KKK K KK I XKk k[

#i f def W NSOCK
if (init_wnsock() !'=0) {
exit(1);
}
#endi f /* WNSOCK */

i nst Sock = openSocket ("xxxxxx", SCPlI_PORT); /* Put your hostnane here */
if (instSock == | NVALI D_SOCKET) {

fprintf(stderr, "Unable to open socket.\n");

return 1;

}

/* fprintf(stderr, "Socket opened.\n"); */

buf Bytes = queryl nstrunent (i nst Sock, "*IDN?\n", charBuf, | NPUT_BUF_SI ZE);
printf("ID %\n",charBuf);

command! nst runent (i nst Sock, "FREQ 2.5 GHz\n");

printf("\n");

buf Byt es = queryl nstrunent (i nst Sock, "FREQ CWP\n", charBuf, | NPUT_BUF_SI ZE);
printf("Frequency: %\n", charBuf);

commandl! nst runent (i nst Sock, "POWAMPL -5 dBm n");

buf Byt es = queryl nstrunent (i nst Sock, "POW AMPL?\n", charBuf, | NPUT_BUF_SI ZE);
printf("Power Level: %\n", charBuf);

printf("\n");

#i f def W NSOCK

Agilent E8663B Analog Signal Generator Programming Guide 111

Programming Examples
LAN Programming Interface Examples

cl osesocket (i nst Sock) ;
cl ose_wi nsock();
#el se
cl ose(i nst Sock) ;
#endi f /* WNSOCK */

return O;

}

[R AR KR Kk Kk A KK KKK KKK A KK KK KAk A A KR KKK KA KKK I KKK A KA KKK KA KKK IR KA KKK KK KA K h Kk x

get opt (30) get opt (3C)

PROGRAM FI LE NAME: getopt.c
getopt - get option letter fromargunent vector

SYNCPSI S
int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

PRORGAM DESCRI PTI ON:
getopt returns the next option letter in argv (starting fromargv[1])
that matches a letter in optstring. optstring is a string of
recogni zed option letters; if a letter is followed by a colon, the
option is expected to have an argunment that may or may not be
separated fromit by white space. optarg is set to point to the start
of the option argunent on return from getopt.

getopt places in optind the argv index of the next argument to be
processed. The external variable optind is initialized to 1 before

the first call to the function getopt.

When all options have been processed (i.e., up to the first non-option
argunment), getopt returns EOF. The special option -- can be used to
delimt the end of the options; EOF is returned, and -- is skipped.

KKKk KK KKK R KKK KKK R K KA KKK KKK K KK IR A KA KA KKK KA KKK IR KKK KA KKK AKX KKK KR kK [

#i ncl ude <stdio. h> /* For NULL, ECOF */
#i nclude <string. h> /* For strchr() */

112 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

char *optarg; /* d obal argument pointer. */
int optind = O; /* dobal argv index. */
static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)
{
char c;

char *posn;

optarg = NULL;

if (scan == NULL || *scan == "\0") {
if (optind == 0)
opti nd++;
if (optind >= argc || argv[optind][O] !="'-" || argv[optind][1] == '"\0")
return(EOF);
if (strcnp(argv[optind], "--")==0) {
opti nd++;

return(EOF);

scan = argv[optind] +1;
opti nd++;

Cc = *scant+;

posn = strchr(optstring, c); /* DDP */

if (posn == NULL || ¢ ==":") {
fprintf(stderr, "%: unknown option -%\n", argv[0], c);
return('?');

}
posn++;
if (*posn == ":") {
if (*scan !'="\0") {
optarg = scan;
scan = NULL;
} else {

optarg = argv[optind];

Agilent E8663B Analog Signal Generator Programming Guide 113

Programming Examples
LAN Programming Interface Examples

opti nd++;

return(c);

114

Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
LAN Programming Interface Examples

Sockets LAN Programming Using Java

In this example the Java program connects to the signal generator via sockets LAN. This program
requires Java version 1.1 or later be installed on your PC. To run the program perform the following
steps:

1. In the code example below, type in the hostname or IP address of your signal generator. For
example, String instrunmentNane = (your signal generator’s hostnane).

2. Copy the program as Scpi SockTest.java and save it in a convenient directory on your
computer. For example save the file to the C:\j dk1l. 3. 0_2\ bi n\j avac directory.

Launch the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

Compile the program. At the command prompt type: j avac Scpi SockTest .| ava.
The directory path for the Java compiler must be specified. For example:
C:\>jdkl. 3.0_02\bi n\javac Scpi SockTest.java

Run the program by typing j ava Scpi SockTest at the command prompt.

Type exit at the command prompt to end the program.

Generating a CW Signal Using Java

The following program example is available on the signal generator Documentation CD-ROM as
javaex. txt.

[FF R R R Rk kK KK KK KA K KKK KAk A KR KKK KA KKK I KA KA KKK KR KKK KK IR KKK K KK KA K h Kk x

/| PROGRAM NAME: | avaex. t xt /'l Sanple java
programto talk to the signal generator via SCPl-over-sockets

/1 This programrequires Java version 1.1 or later.

/1 Save this code as Scpi SockTest.]java

/1 Conpile by typing: javac Scpi SockTest.]java

/1 Run by typing: java Scpi SockTest

/1 The signal generator is set for 1 GHz and queried for its id string

[RFE KRk kk ok ok ok kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkk*x

inmport java.io.*;
import java.net.*;
cl ass Scpi SockTest
{
public static void main(String[] args)
{
String instrument Nane = "xxxxx"; /1 Put instrument hostnane here
try
{
Socket t = new Socket (i nstrunent Nane, 5025); // Connect to instrunment
/1 Setup read/wite nechanism
Buf feredWiter out =
new Buf feredWiter(

Agilent E8663B Analog Signal Generator Programming Guide 115

Programming Examples
LAN Programming Interface Examples

}

new Qut put StreanWiter(t.getQutputStrean()));

Buf f eredReader in =

new Buf f er edReader (

new | nput StreanReader (t. getlnputStream()));
Systemout.println("Setting frequency to 1 GHz...");

out.wite("freq 1GHz\n"); /1 Sets frequency

out. flush();

Systemout.println("Witing for source to settle...");
out.wite("*opc?\n"); /1 Waits for conpletion
out. flush();

String opcResponse = in.readLine();

if (!opcResponse. equal s("1"))
{
Systemerr.println("lnvalid response to '*OPC?'!");
Systemexit(1);

}
Systemout.println("Retrieving instrument ID...");
out.wite("*idn?\n"); /1 Querys the id string
out. flush();
String i dnResponse = in.readLine(); // Reads the id string

/1l Prints the id string
+ i dnResponse) ;

Systemout. println("Instrument |D:

}
catch (1 OException e)

{

Systemout.printin("Error" + e);

Sockets LAN Programming Using PERL

This example uses PERL script to control the signal generator over the sockets LAN interface. The
signal generator frequency is set to 1 GHz, queried for operation complete and then queried for it’s
identify string. This example was developed using PERL version 5.6.0 and requires a PERL version
with the I0::Socket library.

1.

3.

In the code below, enter your signal generator’s hostname in place of the Xxxxx in the code line:
ny $i nstrunment Name= “xxxxx”;

Save the code listed below using the filename | anperl .

Run the program by typing perl |anperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the signal generator Documentation CD-ROM as

116

Agilent E8663B Analog Signal Generator Programming Guide

perl.txt.

#1/ usr/ bin/perl

PROGRAM NAME: perl . txt

Exanple of talking to the signal generator via SCPl-over-sockets
#

use 1O : Socket ;

Change to your instrument's hostnane

ny $instrument Name = "xxxxx";

Get socket

$sock = new | O : Socket:: I NET (Peer Addr => $instrunent Nane,
Peer Port => 5025,
Proto => 'tcp',
)

di e "Socket Could not be created, Reason: $!'\n" unless $sock;

Set freq
print "Setting frequency...\n";
print $sock "freq 1 GHz\n";

Wait for conpletion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

ny $response = <$sock>;

chonp $response; # Renpves new i ne fromresponse
if ($response ne "1")

{

die "Bad response to '*OPC?" frominstrunent!\n";

Send identification query

print $sock "*IDN?\n";

$response = <$sock>;

chonp $response;

print "Instrument 1D $response\n”;

Programming Examples
LAN Programming Interface Examples

Agilent E8663B Analog Signal Generator Programming Guide

117

Programming Examples
RS-232 Programming Interface Examples

RS-232 Programming Interface Examples

¢ “Interface Check Using HP BASIC” on page 118

¢ “Interface Check Using VISA and C” on page 119

¢ “Queries Using HP Basic and RS-232” on page 121

¢ “Queries for RS-232 Using VISA and C” on page 122

Before Using the Examples

Before using the examples: On the signal generator select the following settings:

¢ Baud Rate - 9600 must match computer’s baud rate
¢ RS-232 Echo - Off

NOTE For LAN programming examples, refer to “LAN Programming Interface Examples” on
page 87.

Interface Check Using HP BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI
command * RST will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is
COMI1 (Serial A on some computers). Refer to “Using RS-232” on page 38 for more information.

’

Watch for the signal generator’s Listen annunciator (L) and the ‘remote preset...” message on the
front panel display. If there is no indication, check that the RS-232 cable is properly connected to
the computer serial port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the program was
typed incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run the program. Refer to
“If You Have Problems” on page 42 for more help.

The following program example is available on the signal generator’s Documentation CD-ROM as
rs232ex1.txt.

10 [k kR kR kR kKRR kR kR kR kR Rk kR kR Rk kR kR Rk kR kR kR Rk Rk K Rk
20 !

30 I PROGRAM NAME: rs232exl. txt

40 !

50 ! PROGRAM DESCRI PTION: This programverifies that the RS-232 connections and
60 ! interface are functional.

70 !

80 ! Connect the UNI X workstation to the signal generator using an RS-232 cable
90 !

100 !

110 ! Run HP BASIC, type in the followi ng commands and then RUN the program

120 !

118 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
RS-232 Programming Interface Examples

130 !

TAQ I RA ARk Rk Ak k kR kA kK kR ok kR kR Rk kR kR kR kR kR Rk kR kR kR Rk kR
150 !

160 I NTEGER Num

170 CONTROL 9, 0; 1 ! Resets the RS-232 interface

180 CONTROL 9, 3; 9600 ! Sets the baud rate to match the sig gen
190 STATUS 9, 4; St at ! Reads the value of register 4

200 NunvBI NAND(Stat, 7) ! Gets the AND val ue

210 CONTROL 9, 4; Num | Sets parity to NONE

220 QUTPUT 9; "*RST" ! Qutputs reset to the sig gen

230 END ! End the program

Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The program
verifies that the RS-232 connections and interface are functional. In this example the COM2 port is
used. The serial port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the
computer serial port you are using. Launch Microsoft Visual C++, add the required files, and enter
the following code into the .cpp source file. r s232ex1. cpp performs the following functions:

¢ prompts the user to set the power on the signal generator to 0 dBm
¢ error checking
* resets the signal generator to power level of -135 dBm

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex1.cpp.

[Rk R kKR R R R KRk kKR KKK KR KKK kR KRRk KR KRR KRR KR K R R KRk R R KK K
/1 PROGRAM NAME: rs232ex1. cpp

11

/1 PROGRAM DESCRI PTI ON: This code exanpl e uses the RS-232 serial interface to
/1 control the signal generator.

11

/1 Connect the conputer to the signal generator using an RS-232 serial cable.
/1 The user is asked to set the signal generator for a 0 dBm power |evel

/1 A reset command *RST is sent to the signal generator via the RS-232

/Il interface and the power level will reset to the -135 dBm | evel.The default
/1 attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used.

/1 These attributes can be changed using VI SA functions.

11

/1 1 MPORTANT: Set the signal generator BAUD rate to 9600 for this test

[] RF KKKk k ok ok ok k ok ok kk kK kkkkkkk ok kk ok kkkkk Kk ok kkkkkkkkkkkkkkkhhkkhkkkkkkkkkhkkhhkkkkkkkkkkkkkk kK Kk

#i ncl ude <visa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i nclude <stdlib. h>

Agilent E8663B Analog Signal Generator Programming Guide 119

Programming Examples
RS-232 Programming Interface Examples

#i ncl ude <coni o. h>

void main ()

{

int baud=9600;// Set baud rate to 9600
printf("Manually set the signal generator power level to O dBmn");
printf("\n");
printf("Press any key to continue\n");
getch();
printf("\n");
Vi Session defaul tRM vi;// Declares a variable of type ViSession
/1 for instrument communication on COM 2 port
Vi Status vi Status = 0;
/| Opens session to RS-232 device at serial port 2
vi St at us=vi OpenDef aul t RM &def aul t RM ;
vi St at us=vi Open(defaul tRM "ASRL2::INSTR', VI_NULL, VI_NULL, &vi);

if(viStatus){// |f operation fails, pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 initialize device
vi St at us=vi Enabl eEvent (vi, VI_EVENT_I O COVWPLETI ON, VI _QUEUE, VI _NULL);

viCear(vi);// Sends device clear command

/1 Set attributes for the session

vi Set Attribute(vi,VI_ATTR_ASRL_BAUD, baud) ;
vi Set Attribute(vi, VI_ATTR_ASRL_DATA BI TS, 8);

viPrintf(vi, "*RST\n");// Resets the signal generator
printf("The signal generator has been reset\n");
printf("Power |evel should be -135 dBmn");
printf("\n");// Prints new line character to the display
vi Close(vi);// C oses session

vi Cl ose(defaul tRM;// O oses default session

}

120 Agilent E8663B Analog Signal Generator Programming Guide

Queries Using HP Basic and RS-232

Programming Examples
RS-232 Programming Interface Examples

This example program demonstrates signal generator query commands over RS-232. Query commands
are of the type *|I DN? and are identified by the question mark that follows the mnemonic.

rs232ex2.t xt performs the following functions:
¢ resets the RS-232 interface

¢ sets the baud rate to match the signal generator rate

¢ reads the value of register 4
* queries the signal generator ID
¢ sets and queries the power level

Start HP Basic, type in the following commands, and then RUN the program:

The following program example is available on the
rs232ex2. txt.

signal generator Documentation CD-ROM as

10 R T T
20 !

30 I PROGRAM NAME: rs232ex2. txt

40 !

50 ! PROGRAM DESCRIPTION: In this exanple, query commands are used to read

60 ! data fromthe signal generator.

70 !

80 ! Start HP Basic, type in the follow ng code and then RUN the program

90 !

OO0 I HA ARk Rk Ak k kR ok ko kR kR k kK kR kR Rk kR kR Rk kR kR kR Rk Rk K Rk
110 !

120 I NTEGER Num

130 DI M Str$[200], Stri1$[20]

140 CONTROL 9, 0; 1 | Resets the RS-232 interface

150 CONTROL 9, 3; 9600 ! Sets the baud rate to match signal generator rate
160 STATUS 9, 4; St at ! Reads the value of register 4

170 NunvBI NAND(St at , 7) ! Gets the AND val ue

180 CONTROL 9, 4; Num ! Sets the parity to NONE

190 QUTPUT 9; "*| DN?" ! Querys the sig gen ID

200 ENTER 9; Str$! Reads the ID

210 VWAIT 2 I Waits 2 seconds

220 PRINT "ID =",Str$! Prints IDto the screen

230 QUTPUT 9; "PON AWPL -5 dbni ! Sets the the power level to -5 dbm

240 QUTPUT 9; " PONP" ! Querys the power |evel of the sig gen

250 ENTER 9; Str1$! Reads the queried val ue

260 PRI NT "Power = ", Stril$! Prints the power |level to the screen

270 END ! End the program

Agilent E8663B Analog Signal Generator Programming Guide

121

Programming Examples
RS-232 Programming Interface Examples

Queries for RS-232 Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The program
verifies that the RS-232 connections and interface are functional. Launch Microsoft Visual C++, add
the required files, and enter the following code into your .cpp source file. r s232ex2. cpp performs
the following functions:

¢ error checking

* reads the signal generator response

e flushes the read buffer

* queries the signal generator for power
¢ reads the signal generator power

The following program example is available on the signal generator Documentation CD-ROM as
rs232ex2. cpp.

[R R R kKR kR R KR KRR KRk K R R KRRk R R KK R R KRR KRR K R KK Rk R R KRR
11

/1 PROGRAM NAME: rs232ex2. cpp

11

/1 PROGRAM DESCRI PTI ON: This code exanpl e uses the RS-232 serial interface to contro

/1 the signal generator.

11

/1 Connect the conputer to the signal generator using the RS-232 serial cable

/1 and enter the follow ng code into the project .cpp source file

/1 The program queries the signal generator ID string and sets and queries the power

Il level. Query results are printed to the screen. The default attributes e.g. 9600 baud
/] parity, 8 data bits,1 stop bit are used. These attributes can be changed using VI SA
/1 functions.

11

/1 1 MPORTANT: Set the signal generator BAUD rate to 9600 for this test

[] KKk Kk ok ok k k ok ok ok ok k ok k ok kK kK k kR ok kR ok ok k kK k kK kk ok ok kR ok ok k ok ok k kK k kK k ok ok k kR k ok k ok ok k ok ok k ok ok ok ok ok ok ok ok ok kK kK ok

#i ncl ude <visa. h>

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i nclude <stdlib. h>
#i ncl ude <coni o. h>

#def i ne MAX_COUNT 200

int main (void)

{

122 Agilent E8663B Analog Signal Generator Programming Guide

Programming Examples
RS-232 Programming Interface Examples

Vi Statusstatus; // Declares a type ViStatus variable

Vi Sessi ondefaul tRM instr;// Declares type Vi Session variabl es
ViU nt32retCount; // Return count for string |I/O

Vi Char buf fer [MAX_COUNT] ; // Buffer for string I/ O

status = vi OpenDefaul t RM &defaul tRM;// Initializes the system
// Open conmunication with Serial Port 2
status = vi Open(defaul tRM "ASRL2::|NSTR', VI_NULL, VI _NULL, & nstr);

if(status){// If problens, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 Set timeout for 5 seconds
vi Set Attribute(instr, VI_ATTR_TMO VALUE, 5000);
/'l Asks for sig gen ID string
status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

/! Reads the sig gen response

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= "\0";// Indicates the end of the string
printf("Signal Generator ID: "); // Prints header for ID
printf(buffer);// Prints the ID string to the screen
printf("\n");// Prints carriage return

/1 Flush the read buffer

/'l Sets sig gen power to -5dbm

status = viWite(instr, (ViBuf)"PONAWL -5dbmn", 15, &retCount);
/'l Querys the sig gen for power |evel

status = viWite(instr, (ViBuf)"PON\n",5, & etCount);

/'l Read the power |evel

status = vi Read(instr, (ViBuf)buffer, MAX COUNT, &retCount);
buffer[retCount]= "\0";// Indicates the end of the string
printf("Power level = ");// Prints header to the screen
printf(buffer);// Prints the queried power |evel
printf("\n");

status = viC ose(instr);// C ose down the system

status = vi Cl ose(defaul tRV;

return O;

}

Agilent E8663B Analog Signal Generator Programming Guide 123

Programming Examples
RS-232 Programming Interface Examples

124 Agilent E8663B Analog Signal Generator Programming Guide

4 Programming the Status Register System

e “Overview” on page 126

e “Status Register Bit Values” on page 129

¢ “Accessing Status Register Information” on page 130
e “Status Byte Group” on page 134

e “Status Groups” on page 136

Agilent E8663B Analog Signal Generator Programming Guide

125

Programming the Status Register System
Overview

Overview

NOTE Some of the status bits do not apply to the E8663B. For more specific information on each
exception, refer to the following:

¢ Standard Operation Condition Register bits (see Table 4-5 on page 140)

¢ Data Questionable Condition Register bits (see Table 4-6 on page 143)

¢ Data Questionable Power Condition Register bits (see Table 4-7 on page 146)

¢ Data Questionable Frequency Condition Register bits (see Table 4-8 on page 149)
¢ Data Questionable Modulation Condition Register bits (see Table 4-9 on page 152)
¢ Data Questionable Calibration Condition Register bit (see Table 4-10 on page 155)

During remote operation, you may need to monitor the status of the signal generator for error
conditions or status changes. For more information on using the signal generator’s SCPI commands to
query the signal generator’s error queue, refer to signal generator’s SCPI command reference guide,
to see if any errors have occurred. An alternative method uses the signal generator’s status register
system to monitor error conditions, or condition changes, or both.

The signal generator’s status register system provides two major advantages:

* You can monitor the settling of the signal generator using the settling bit of the Standard
Operation Status Group’s condition register.

* You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving
a speed advantage.

The signal generator’s instrument status system provides complete SCPI Standard data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a
hierarchical order. The lower-priority status registers propagate their data to the higher-priority
registers using summary bits. The Status Byte Register is at the top of the hierarchy and contains the
status information for lower level registers. The lower level registers monitor specific events or
conditions.

The lower level status registers are grouped according to their functionality. For example, the Data
Quest. Frequency Status Group consists of five registers. This chapter may refer to a group as a
register so that the cumbersome correct description is avoided. For example, the Standard Operation
Status Group’s Condition Register can be referred to as the Standard Operation Status register. Refer
to “Status Groups” on page 136 for more information.

Figure 4-1 and Figure 4-2 shows the signal generator’s status byte register system and hierarchy.

The status register systems use IEEE 488.2 commands (those beginning with *) to access the
higher-level summary registers (refer to the SCPI Reference). Access Lower-level registers by using
STATus commands.

126 Agilent E8663B Analog Signal Generator Programming Guide

Figure 4-1 E8663B: Overall Status Byte Register System (1 of 2)

Data Questionabl_e Power Status Group

R.P.P. Tripped -
Unleveled -
Unused
Unused -
Unused
Unused o
Unused

Unused —
Unused -
Unused

)
)

(+)Trans Filter
(-)Trans Filter
Event Register

Unused -
Unused -
Unused o

Condition Register
Event Enable Reg.

Unused o
Unused
Always Zero (0) -

OB WON200ONDABWN =20

[Ny

c

Data Quest. Frequency Status Group

Synth. Unlocked < 0
10 MHz Ref Unlocked < 1
1 GHz Ref Unlocked 4 2
Unused 4 3
Unused | 4 sl |_|.|®
Sampler Loop Unlocked o 5 21L8|8|2 [x
YO Loop Unlocked - 6 K g [=Y
Unused o 7 Egg§g®—
Unused = 8 B il g B=g]
Unused 4 9 o 'q_? ',: 2ls
Unused =10 Sv“’”"uﬁ
Unused |11
Unused 112
Unused 413
Unused —{14

Always Zero (0) —E
Data Quest. Modulation Status Group

Mod 1 Undermod -
Mod 1 Overmod
Mod 2 Undermod —
Mod 2 Overmod
Modulation Uncalibrated —|
Unused o

Unused -

Unused —

Unused —

Unused -

Unused {10

Unused {11

Unused 412

Unused 413

Unused - 14

Always Zero (0) 4 15]

Data Quest. Calibration Status Group

®_

OO~ BWN =0

W

Condition Register
(+)Trans Filter
(-)Trans Filter
Event Register
Event Enable Reg.

DCFM/DCOM —
Zero Failure-| O
Unused o 1
Unused 9 2
Unused 4 3 by o)
Unused - 4 EEGE&
Unused - 5 fod = = KO
Unused - 6 §ttg§
et § g5 B E(D——
Unused 4 9 2'5'_73;5,
Unused 410 vawlﬁ
Unused 411
Unused 412
Unused {13
Unused 414
Always Zero (0) 415

Programming the Status Register System
Overview

To Data Questionable Status Group #3

To Data Questionable Status Group #5

To Data Questionable Status Group #7

To Data Questionable Status Group #8

Agilent E8663B Analog Signal Generator Programming Guide

127

Programming the Status Register System
Overview

Figure 4-2 E8663B: Overall Status Byte Register System (2 of 2)

Status Byte Register
Unused| 0

Unused

From Data Questionable Power Status Group Error/Event Queue Summary Bit

Data Questionable Status Summary Bit

From Data Quest. Frequency Status Group Data Questionable Message Available (MAV)
'
Status Group Std. Event Status Sum. Bit

Unused —

From Data Quest. Modulation Status Group

A
Jd

Req. Serv. Sum. Bit (RQS)
[
Std. Operation Status Sum. Bit

Unused —
From Data Quest. Calibration Status Group Unused —

~NjJojloldlolNd|—

(summary) —
TEMPerature _|
(OVEN COLD)
(summary)—
Unused —

(summary)—

(summary)—
SELFtest =
Unused— 10
Unused — 11
Unused— 12
Unused— 13
Unused — 14
Always Zero (0)— 15

(-)Trans Filter
Event Register
Event Enable Reg.
+

Condition Register
(+)Trans Filter

W ® ~N O O~ WN =20

Standard Event Status Group
Oper. Complete
Req. Bus Control
Query Error

Dev. Dep. Error
Execution Error
Command Error
User Request
Power On

-
Ll
.2
ﬂ)-Q

©
B:C
b
G
I'|'|>
w

|
|\I®U’|J>(.0I\)—\O

Standard Operation Status Group

Unused— 0
Settling— 1
Unused—< 2)’
SWEeping— 3 v ﬁgD
Unused 4 4 . . &, ‘
0] | (
Waiting for TRIGer - 5 % |5 |58 |2 PAC
o= = B
- 9 [T [T [5|2
Unused 6 > % t %ﬁ f&
Unused = 7 SISISE]
1218 [|2 Jw
Unused - g = = =6 e &
DCFM/DCOM _| S[Efelm|e
Nullin F’rogrg)ss 9 8]
Unused— 10
Sweep Calculating— 11 L
BERT SYNChronizing— 12 716]5]4]3]2]1]0
Unused— 13
Unused—{ 14 Service Request

Always Zero (0)—{ 15 | Enable Register

128 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in a register is represented by a decimal value based on its location in the register (see
Table 4-1).

¢ To enable a particular bit in a register, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

¢ To enable more than one bit, send the sum of all the bits that you want to enable.

¢ To verify the bits set in a register, query the register.

Example: Enable a Register

To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit O (1) and the decimal value of bit 6 (64) to give a decimal value of
65.

2. Send the sum with the command: *ESE 65.

Example: Query a Register
To query a register for a condition, send a SCPI query command. For example, if you want to query
the Standard Operation Status Group’s Condition Register, send the command:

STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits = 1) then the query will return the decimal value
140. The value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

Table 4-1 Status Register Bit Decimal Values

(=) < [\ © R < [a\} NeJ R <t [N © [ee) <t [a\] —
. . (2 |2 |2 |2 |8 |2|8|8|2|% |~
Decimal S) © < N —
Value 2 —
<
Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOTE Bit 15 is not used and is always set to zero.

Agilent E8663B Analog Signal Generator Programming Guide 129

Programming the Status Register System
Accessing Status Register Information

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition. Refer to Figure 4-1 on
page 127 and Figure 4-2 on page 128 for register location and names.

2. Send the unique SCPI query that reads that register.

3. Examine the bit to see if the condition has changed.

Determining What to Monitor

You can monitor the following conditions:

e current signal generator hardware and firmware status
¢ whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These
registers represent the current state of the signal generator and are updated in real time. When the
condition monitored by a particular bit becomes true, the bit sets to 1. When the condition becomes
false, the bit resets to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an
event. The transitions can be positive to negative, negative to positive, or both. To monitor a certain
condition, enable the bit associated with the condition in the associated positive and negative
registers.

Once you have enabled a bit via the transition registers, the signal generator monitors it for a change
in its condition. If this change in condition occurs, the corresponding bit in the event register will be
set to 1. When a bit becomes true (set to 1) in the event register, it stays set until the event register
is read or is cleared. You can thus query the event register for a condition even if that condition no
longer exists.

To clear the event register, query its contents or send the *CLS command, which clears all event
registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The transition
registers are preset to register positive transitions (a change going from 0 to 1). This can be changed
so the selected bit is detected if it goes from true to false (negative transition), or if either transition
occurs.

Deciding How to Monitor

You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

¢ The polling method

In the polling method, the signal generator has a passive role. It tells the controller that
conditions have changed only when the controller asks the right question. This is accomplished by
a program loop that continually sends a query.

130 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Accessing Status Register Information

The polling method works well if you do not need to know about changes the moment they occur.
Use polling in the following situations:

— when you use a programming language/development environment or IO interface that does not
support SRQ interrupts

— when you want to write a simple, single-purpose program and don’t want the added
complexity of setting up an SRQ handler

¢ The service request (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more active
role. It tells the controller when there has been a condition change without the controller asking.
Use the SRQ method to detect changes using the polling method, where the program must
repeatedly read the registers.

Use the SRQ method if you must know immediately when a condition changes. Use the SRQ
method in the following situations:

— when you need time- critical notification of changes

— when you are monitoring more than one device that supports SRQs

— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, I/O interface, and programming environment must support SRQ
interrupts (for example: BASIC or VISA used with GPIB and VXI-11 over the LAN). Using this
method, you must do the following:

Determine which bit monitors the condition.
Send commands to enable the bit that monitors the condition (transition registers).
Send commands to enable the summary bits that report the condition (event enable registers).

Send commands to enable the status byte register to monitor the condition.

A

Enable the controller to respond to service requests.

The controller responds to the SRQ as soon as it occurs. As a result, the time the controller would
otherwise have used to monitor the condition, as in a loop method, can be used to perform other
tasks. The application determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the request service summary (RQS)
bit in the status byte register is set. In order for the controller to respond to the change, the Service
Request Enable Register needs to be enabled for the bit(s) that will trigger the SRQ.

Generating a Service Request

The Service Request Enable Register lets you choose the bits in the Status Byte Register that will
trigger a service request. Send the *SRE <num> command where <num> is the sum of the decimal
values of the bits you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation
Status register summary bit is set to 1, a service request is generated) send the command *SRE 128.
Refer to Figure 4-1 on page 127 and Figure 4-2 on page 128 for bit positions and values.

Agilent E8663B Analog Signal Generator Programming Guide 131

Programming the Status Register System
Accessing Status Register Information

The query command *SRE? returns the decimal value of the sum of the bits previously enabled with
the *SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will be the decimal sum
of the bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136
(bit 7 = 128 and bit 3 = 8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a time can set
the RQS bit. All bits that are asserting an SRQ will be read as part of the status byte when
it is queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are
necessary to inform the controller that the signal generator requires service. Asserting SRQ informs
the controller that some device on the bus requires service. Setting the RQS bit allows the controller
to determine which signal generator requires service.

This process is initiated if both of the following conditions are true:
* The corresponding bit of the Service Request Enable Register is also set to 1.
* The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ
process is initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the
controller to perform a serial poll when SRQ is true. Each device on the bus returns the contents of
its status byte register in response to this poll. The device whose request service summary (RQS) bit
is set to 1 is the device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and the mode set to
continuous, restarting the measurement (INIT command) can cause the measuring bit to pulse low.
This causes an SRQ when you have not actually reached the “end-of-sweep” or measurement
condition. To avoid this, do the following:

1. Send the command | N Ti at e: OONTi nuous CFF.
2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level using the IEEE 488.2
common commands listed below. You can set and query individual status registers using the
commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and clearing all
the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable Register
which is part of the Standard Event Status Group.

132 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Accessing Status Register Information

*ESR? (event status register) queries and clears the Standard Event Status Register which is part
of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the
current processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service Request
Enable Register, the Standard Event Status Enable Register, and device-specific event enable
registers at power on. The query returns the flag setting from the *PSC command.

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request Enable
Register.

*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and error/event
queue enable registers. (Refer to Table 4-2.)

Table 4-2 Effects of :STATus:PRESet

Register Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABIle 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABle 0
:STATus:QUEStionable:NTRansition 0
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABIle 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:MODulation:ENABle 32767
:STATus:QUEStionable:MODulation:NTRansition 32767
:STATus:QUEStionable:MODulation:PTRansition 32767
:STATus:QUEStionable:POWer:ENABle 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767

Agilent E8663B Analog Signal Generator Programming Guide 133

Programming the Status Register System

Status Byte Group

Status Byte Group

The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.

Status Byte Register
0 | Unused
1 | Unused
2 | Error/Event Queue Summary Bit
3 | Data Questionable Summary Bit
4 | Message Available (MAV)
5 | Standard Event Summary Bit
po===---- #»| 6 | Request Service (RQS)
1
i 7 | Operation Status Summary Bit
)
]
]
|
)
PSP M A S S S Bl
]
\ {
1
(85 |
lr 2) i
A C&\ i
i g&\ !
-
b @
A ®
i '
&
T
0[1]12]|3|4]|5]|6] 7| Service Request Enable Register

ck721a

134

Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Byte Group

Status Byte Register
Table 4-3 Status Byte Register Bits
Bit Description

0,1 Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error queue is not empty. The SCPI
error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data Questionable summary bit has
been set. The Data Questionable Event Register can then be read to determine the specific condition that caused this
bit to be set.

4 Message Available. A 1 in this bit position indicates that the signal generator has data ready in the output queue.
There are no lower status groups that provide input to this bit.

5 Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard Event summary bit has been
set. The Standard Event Status Register can then be read to determine the specific event that caused this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least one
reason to require service. This bit is also called the Master Summary Status bit (MSS). The individual bits in the Status
Byte are individually ANDed with their corresponding service request enable register, then each individual bit value is
ORed and input to this bit.

7 Standard Operation Status Summary Bit. A 1 in this bit position indicates that the Standard Operation Status
Group’s summary bit has been set. The Standard Operation Event Register can then be read to determine the specific
condition that caused this bit to be set.

Query: *STB?
Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.
Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)

Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status Byte Register trigger a
service request.

*SRE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 4-1 on page 127 and Figure 4-2 on page 128.

Example: To enable bits 7 and 5 to trigger a service request when either corresponding status group
register summary bit sets to 1, send the command * SRE 160 (128 + 32).

Query: * SRE?

Response: The decimal value of the sum of the bits previously enabled with the * SRE <dat a> command.

Agilent E8663B Analog Signal Generator Programming Guide 135

Programming the Status Register System

Status Groups

Status Groups

The Standard Operation Status Group and the Data Questionable Status Group consist of the
registers listed below. The Standard Event Status Group is similar but does not have negative or
positive transition filters or a condition register.

Condition
Register

Negative
Transition
Filter

Positive
Transition
Filter

Event
Register

Event
Enable
Register

A condition register continuously monitors the hardware and firmware status of
the signal generator. There is no latching or buffering for a condition register; it is
updated in real time.

A negative transition filter specifies the bits in the condition register that will set
corresponding bits in the event register when the condition bit changes from 1 to
0.

A positive transition filter specifies the bits in the condition register that will set
corresponding bits in the event register when the condition bit changes from 0 to
1.

An event register latches transition events from the condition register as specified
by the positive and negative transition filters. Once the bits in the event register
are set, they remain set until cleared by either querying the register contents or
sending the *CLS command.

An enable register specifies the bits in the event register that generate the
summary bit. The signal generator logically ANDs corresponding bits in the event
and enable registers and ORs all the resulting bits to produce a summary bit.
Summary bits are, in turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status
summary bits. In each status group, corresponding bits in the condition register are filtered by the
negative and positive transition filters and stored in the event register. The contents of the event
register are logically ANDed with the contents of the enable register and the result is logically ORed
to produce a status summary bit in the Status Byte Register.

136

Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status
Byte Register. This group consists of the Standard Event Status Register (an event register) and the
Standard Event Status Enable Register.

Operation Complete

Request Bus Control

Query Error
Device Dependent Error

Execution Error
Command Error
User Request
Power On

o e
~ |
w |«
N
— |
o e

Event Register 7 6

&
Event 0
Enable Register
vy To Status Byte Register Bit #5 ok7288

Agilent E8663B Analog Signal Generator Programming Guide 137

Programming the Status Register System
Status Groups

Standard Event Status Register

Table 4-4 Standard Event Status Register Bits
Bit Description
0 Operation Complete. A 1 in this bit position indicates that all pending signal generator operations were completed
following execution of the * CPC command.
1 Request Control. This bit is always set to 0. (The signal generator does not request control.)
2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors have instrument error
numbers from —499 to —400.
3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has occurred. Device
dependent errors have instrument error numbers from —-399 to —300 and 1 to 32767.
4 Execution Error. A 1 in this bit position indicates that an execution error has occurred. Execution errors have
instrument error numbers from —-299 to —200.
5 Command Error. A 1 in this bit position indicates that a command error has occurred. Command errors have
instrument error numbers from —-199 to —100.
6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been pressed. This is true even if
the signal generator is in local lockout mode.
7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and then on.

Query: * ESR?
Response: The decimal sum of the bits set to 1
Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status
Register set the summary bit (bit 5 of the Status Byte Register) to 1.

*ESE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 7 and bit 6 so that whenever either of those bits are set to 1, the Standard Event
Status summary bit of the Status Byte Register is set to 1. Send the command * ESE 192 (128 +
64).

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the * ESE <dat a> command.

138

Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Standard Operation Status Group

NOTE Some of the bits in this status group do not apply to the E8663B and returns zero when
queried. See Table 4-5 on page 140 for more information.

The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte
Register. This group consists of the Standard Operation Condition Register, the Standard Operation
Transition Filters (negative and positive), the Standard Operation Event Register, and the Standard
Operation Event Enable Register.

Unused
Settling
Unused
SWEeping
Unused
Waiting for TRIGger
Unused
Unused
Unused
DCFM/DC)M Null in Progress
Baseband is busy
SWEep Calculating

Unused
Unused
Unused

Always Zero (0)
l Yvyvyy

Standard Operation | 15 14 13 12 11 10

Condition Register + + + + + +

514 13 12 11 10

Standard Operation + + * + +

Negative |15 14 13 12 11 10

Transition Filter + + + + + +

Standard Operation
Event Hogier " [15 14 13 12 11 10

&
&
{&
—@ ;
&
&
&

<
d
<
d
<
<
d
<
<t
<t

Standard Operation
Positive |
Transition Filter

o
~
R0
© | © [e- © 4 ©
@ g O fg— O |g— O |t
~N e N e N e N
ol ol oo
% o1 | 01l 0 [t
) N s = ES
) © [[© e w
NP 1 [N [O [o [

B S s = Y B
g,\A

o

Etandard Operation

vent
Enable Register 15 14 13 12 11 10 9 8 7 6 5 4 3

¥ To Status Byte Register Bit #7

ck702¢c

Agilent E8663B Analog Signal Generator Programming Guide 139

Programming the Status Register System

Status Groups

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 4-5 Standard Operation Condition Register Bits

Bit Description
0 Unused. These bits are always set to 0.
1 Settling. A 1 in this bit position indicates that the signal generator is settling.
2 Unused. This bit position is always set to 0.
3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.
4 Unused. These bits are always set to 0.
5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for trigger”
state.
6,7,8 Unused. These bits are always set to 0.
9 DCFM/DC@M Null in Progress. A 1 in this bit position indicates that the signal generator is
currently performing a DCFM/DC®M zero calibration.
10 Unused. These bits are always set to 0.
11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is currently doing
the necessary pre-sweep calculations.
12, 13, 14 Unused. These bits are always set to 0.
15 Always 0.
Query: STATus: OPERat i on: CONDI ti on?
Response: The decimal sum of the bits set to 1
Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1

to 0).
Commands: STATus: OPERat i on: NTRansi ti on <val ue> (negative transition), or
STATus: OPERat i on: PTRansi ti on <val ue> (positive transition), where
<val ue> is the sum of the decimal values of the bits you want to enable.
140 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Queries: STATus: OPERat i on: NTRansi ti on?
STATus: OPERat i on: PTRansi ti on?

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read only. Reading data from an
event register clears the content of that register.

Query: STATus: OPERat i on[: EVENL] ?

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation
Event Register set the summary bit (bit 7 of the Status Byte Register) to 1.

Command: STATus: CPERat i on: ENABl e <val ue>, where
<val ue> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Standard Operation
Status summary bit of the Status Byte Register is set to 1. Send the command STAT: OPER: ENAB 520
(512 + 8).

Query: STATus: CPERat i on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the STATus: OPERat i on: ENABI e

<val ue> command.

Agilent E8663B Analog Signal Generator Programming Guide 141

Programming the Status Register System
Status Groups

Data Questionable Status Group

NOTE

Some of the bits in this status group do not apply to the E8663B and returns zero when
queried. Other bits have changed state content. See Table 4-6 on page 143 for more
information.

The Data Questionable Status Group is used to determine the specific event that set bit 3 in the
Status Byte Register. This group consists of the Data Questionable Condition Register, the Data
Questionable Transition Filters (negative and positive), the Data Questionable Event Register, and the
Data Questionable Event Enable Register.

&

Unused

Unused
Unused

POWer (summary)

TEMPerature (OVEN COLD)
FREQuency (summary)

Unused

MODulation (summary)
CALibration (summary)

SELFtest

Unused
Unused

Unused
Unused
Unused
Always Zero (0)

Yy vy

1
<

<
<
<
<
<
<

DataQUEStionabIe| 15 14 13 12

—
jury
—
o

Condition Register
Data QUEStionable + + + +

Positive 15 14 13 12

-y
ury
Y
o

Transition Filter
' EE'R

Data QUEStionable
Negative |15 14 13 12

—
jury
—
o

Transition Filter
R’

[

DataQUEStionabIe| 15 14 13 12

© (@ © [© (@€ © [«
® g © g ® g © |a
N N e N e N
o [O [O [»
U [O [O [01
[DI [Ny I [Y P I N %
W W W W
OMM{ O MO O

Event Register
& *
&
(&

&

Data QUEStionable

Event
Enable Register |15 14 13 12

1 10

20
20
20
)
)
e
)
NP EE——————————— 1 [D [O [o [
= | = | =] e
)

9 87 6543

\

I To Status Byte Register Bit #3

142

Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of
the signal generator. Condition registers are read only.

Table 4-6 Data Questionable Condition Register Bits

Bit Description
0,1, 2 Unused. These bits are always set to 0.

3 Power (summary). This is a summary bit taken from the QUEStionable:POWer register. A 1 in this bit position
indicates that one of the following may have happened: The ALC (Automatic Leveling Control) is unable to
maintain a leveled RF output power (i.e., ALC is UNLEVELED), the reverse power protection circuit has been
tripped. See the “Data Questionable Power Status Group” on page 145 for more information.

4 Temperature (OVEN COLD). A 1 in this bit position indicates that the internal reference oscillator (reference
oven) is cold.

5 Frequency (summary). This is a summary bit taken from the QUEStionable:FREQuency register. A 1 in this bit
position indicates that one of the following may have happened: synthesizer PLL unlocked, 10 MHz reference
VCO PLL unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or baseband 1 unlocked. For more
information, see the “Data Questionable Frequency Status Group” on page 148.

6 Unused. This bit is always set to 0.

7 Modulation (summary). This is a summary bit taken from the QUEStionable:MODulation register. A 1 in this
bit position indicates that one of the following may have happened: modulation source 1 underrange,
modulation source 1 overrange, modulation source 2 underrange, modulation source 2 overrange, or modulation
uncalibrated. See the “Data Questionable Modulation Status Group” on page 151 for more information.

8 Calibration (summary). This is a summary bit taken from the QUEStionable:CALibration register. A 1 in this
bit position indicates that an error has occurred in the DCFM/DC®M zero calibration. See the “Data
Questionable Calibration Status Group” on page 154 for more information.

9 Self Test. A 1 in this bit position indicates that a self-test has failed during power-up. Reset this bit by cycling
the signal generator’s line power. *CLS will not clear this bit.

10-14 Unused. These bits are always set to 0.
15 Always 0.
Query: STATus: QUESt i onabl e: CONDi ti on?
Response: The decimal sum of the bits set to 1
Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Agilent E8663B Analog Signal Generator Programming Guide 143

Programming the Status Register System
Status Groups

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1
to 0).

Commands: STATus: QUESt i onabl e: NTRansi ti on <val ue> (negative transition), or
STATus: QUESti onabl e: PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: NTRansi ti on?
STATus: QUESt i onabl e: PTRansi ti on?

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESti onabl e[: EVEN] ?

Data Questionable Event Enable Register
The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable
Event Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus: QUESt i onabl e: ENAB| e <val ue> where <val ue> is the sum of the decimal values of the bits
you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable Status
summary bit of the Status Byte Register is set to 1. Send the command STAT: QUES: ENAB 520 (512 +
8).

Query: STATus: QUESt i onabl e: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the STATus: QUESt i onabl e: ENAB| e

<val ue> command.

144 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Power Status Group

NOTE Some of the bits in this status group do not apply to the E8663B and returns zero when
queried. See Table 4-7 on page 146 for more information.

The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in
the Data Questionable Condition Register. This group consists of the Data Questionable Power
Condition Register, the Data Questionable Power Transition Filters (negative and positive), the Data
Questionable Power Event Register, and the Data Questionable Power Event Enable Register.

Reverse Power Protection Tripped
Unleveled
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Always Zero (0) j

Data QUESticnable Y VY VY
POWer
Condition Register |15 14 13 12 11 10

Data QUEStionable + + + + + +

Wer

-
<
%
<
<%
-
-
Bl
)
Bl
-
<%
>
%

- —
=

A A

98765432

YYVYVVYY
POWer [514 18 211100876543 210|
TransitionFilIter + + + + + +++++++++++
Egt®$UESt'onable|15 1413 12 1110 9 8 7 6 5 4 3 2 1 o|
Tri%asi{\i/gnﬁ“er yVYVYY VYVVYVYVYVYVYY
Bawer oM 15 14 13 12 1110 987 654 8 2 1 0|

Event Register
&

&
&
&
&
PG Y
_@ ey X
Y
&
oby |
2OY
Data QUEStionable [%}
POWer
Event 1514131211109876543210|
Enable Register
Y To Data Questionable Status Register Bit #3 ok704c

Agilent E8663B Analog Signal Generator Programming Guide 145

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Table 4-7 Data Questionable Power Condition Register Bits

Bit Description

0 Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse power protection (RPP) circuit
has been tripped. There is no output in this state. Any conditions that may have caused the problem should be
corrected. Reset the RPP circuit by sending the remote SCPI command: OUTput:PROTection:CLEar. Resetting the RPP
circuit bit, resets this bit to 0.

1 Unleveled. A 1 in this bit position indicates that the output leveling loop is unable to set the output power.

2-14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: POAér: CONDI ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESti onabl e: POMr : NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: POAer : PTRansi ti on <val ue> (positive transition), where

<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: POMr : NTRansi ti on? STATus: QUESt i onabl e: POMr : PTRansi ti on?

146 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESt i onabl e: POMér[: EVENt] ?

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data
Questionable Power Event Register set the summary bit (bit 3 of the Data Questionable Condition
Register) to 1.

Command: STATus: QUESt i onabl e: POMr : ENABl e <val ue> where <val ue> is the sum of the decimal values of
the bits you want to enable

Example: Enable bit 3 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable Power
summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: PON ENAB 520 (8 + 4).

Query: STATus: QUESt i onabl e: PONér : ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: POAer : ENABI e <val ue> command.

Agilent E8663B Analog Signal Generator Programming Guide 147

Programming the Status Register System
Status Groups

Data Questionable Frequency Status Group

NOTE Some bits in this status group do not apply to the E8663B and returns zero when queried.
See Table 4-8 on page 149 for more information.

The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5
in the Data Questionable Condition Register. This group consists of the Data Questionable Frequency
Condition Register, the Data Questionable Frequency Transition Filters (negative and positive), the
Data Questionable Frequency Event Register, and the Data Questionable Frequency Event Enable
Register.

Synthesizer Unlocked
10 MHz Reference Unlocked
1 GHz Reference Unlocked
Baseband 1 Unlocked
Unused
Sampler Loop Unlocked
YO Loop Unlocked
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused —m8——
Always Zero (0)

Data QUEStionable—l YVvey
Egsgﬁgﬂﬁegister | 15 14 13 12

Data QUEStionable + + +

FREQuenc
FRESuenay [15 14 13 12

Transition Filter

Data QUEStionable + + + +
FREQuency |15 14 13 12
Negative

Transition Filter + + + +

Data QUEStionable
s e [15 14 13 12

Event Register

<
-t
>
d
d

IR = Y O P PN
|
|

- |
ey

|
o |+ 3 =

]
© [© (4 © (4 ©
[P Y B o P)
AV [ENY S N P BN
O [O [O [O

.y
jury

-
-
-
o

[
[

0 | 0 | 01l o |
QY VIR Ny DI (N DI T
© [© (e © | w

—_
ury
_
o

&
&
&

Data QUEStionable
FREQuency

Event 15 14 13 12 11 10 9 8 7 6 5 4 3
Enable Register

To Data Questionable Status Register Bit #5 ck706¢

148 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read-only.

Table 4-8 Data Questionable Frequency Condition Register Bits

Bit Description

0 Synth. Unlocked. A 1 in this bit position indicates that the synthesizer is unlocked.

1 10 MHz Ref Unlocked. A 1 in this bit position indicates that the 10 MHz reference signal is unlocked.
2 1 GHz Ref Unlocked. A 1 in this bit position indicates that the 1 GHz reference signal is unlocked.

3 Unused. This bit is always set to 0.

4 Unused. This bit is always set to 0.

5 Sampler Loop Unlocked. A 1 in this bit position indicates that the sampler loop is unlocked.

6-14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: FREQuency: CONDi ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in the event

register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: FREQuency: NTRansi ti on <val ue> (negative transition) or

STATus: QUESt i onabl e: FREQuency: PTRansi ti on <val ue> (positive transition) where <val ue> is the

sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: FREQuency: NTRansi t i on?
STATus: QUESt i onabl e: FREQuency: PTRansi ti on?

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event
registers are destructive read-only. Reading data from an event register clears the content of that
register.

Query: STATus: QUESt i onabl e: FREQuency[: EVENt] ?

Agilent E8663B Analog Signal Generator Programming Guide

149

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Enable Register
Lets you choose which bits in the Data Questionable Frequency Event Register set the summary bit
(bit 5 of the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: FREQuency: ENABl e <val ue>, where <val ue> is the sum of the decimal values
of the bits you want to enable.

Example: Enable bit 4 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: FREQ ENAB 520 (16 + 8).

Query: STATus: QUESt i onabl e: FREQuency: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: FREQuency: ENABI e <val ue> command.

150 Agilent E8663B Analog Signal Generator Programming Guide

Data Questionable Modulation Status Group

Programming the Status Register System

Status Groups

The Data Questionable Modulation Status Group is used to determine the specific event that set bit 7
in the Data Questionable Condition Register. This group consists of the Data Questionable Modulation
Condition Register, the Data Questionable Modulation Transition Filters (negative and positive), the

Data Questionable Modulation Event Register, and the Data Questionable Modulation Event Enable

Register.

@

Modulation 1 Undermod
Modulation 1 Overmod
Modulation 2 Undermod
Modulation 2 Overmod
Modulation Uncalibrated

Unused

Unused

Unused
Unused

Unused

Unused

Unused

Unused

Unused
Unused

MODulation
Condition Register

Data QUEStionable
MODulation
Positive

Transition Filter
Data QUEStionable
MODulation
Negative
Transition Filter
Data QUEStionable
MODulation

Event Register

Always Zero (0)
Data QUEStionable l Yy vyy

<
%

-
Bl

-
%
<
<
Bl

[15 14 13 12 11

R’

[— |
|

[15 12 13 12 11

3 e 2 |

YVYVYVY

O
=

|15 14 13 12 11

—_
o

—_
o

YV VY

e

[15 14 13 12 11 10

© |4 © |4 © [« ©
o (g © g © g ®
~] N e N] -
ol oo o
U1 [O [O [O
BN IR o RS o N
W [W [W e

— |
<

&
&
(&

Data QUEStionable
MODulation

Event

Enable Register

15 14 13 12 11 10 9 8 7

NP D - o e o o [

- bo
(>
<

o

y

I To Data Questionable Status Register Bit #7

ck708c

Agilent E8663B Analog Signal Generator Programming Guide

151

Programming the Status Register System
Status Groups

Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read-only.

Table 4-9 Data Questionable Modulation Condition Register Bits

Bit Description
0 Modulation 1 Undermod. A 1 in this bit position indicates that the External 1 input, ac coupling on, is less than
0.97 volts.
1 Modulation 1 Overmod. A 1 in this bit position indicates that the External 1 input, ac coupling on, is more than
1.03 volts.
2 Modulation 2 Undermod. A 1 in this bit position indicates that the External 2 input, ac coupling on, is less than
0.97 volts.
3 Modulation 2 Overmod. A 1 in this bit position indicates that the External 2 input, ac coupling on, is more than
1.03 volts.
4 Modulation Uncalibrated. A 1 in this bit position indicates that modulation is uncalibrated.
5-14 Unused. This bit is always set to 0.
15 Always 0.

Query: STATus: QUESt i onabl e: MCDul at i on: CONDi ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on <val ue> (negative transition), or

STATus: QUESt i onabl e: MDul at i on: PTRansi tion <val ue> (positive transition), where <val ue> is
the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on?
STATus: QUESt i onabl e: MDul at i on: PTRansi ti on?

152 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESt i onabl e: MODul ati on[: EVEN] ?

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the Data
Questionable Modulation Event Register set the summary bit (bit 7 of the Data Questionable
Condition Register) to 1.

Command: STATus: QUESt i onabl e: MODul at i on: ENAB| e <val ue> where <val ue> is the sum of the decimal values
of the bits you want to enable.

Example: Enable bit 4 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Modulation summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: MOD: ENAB 520 (16 + 8).

Query: STATus: QUESt i onabl e: MDul at i on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: MODul at i on: ENABI e <val ue> command.

Agilent E8663B Analog Signal Generator Programming Guide 153

Programming the Status Register System
Status Groups

Data Questionable Calibration Status Group

NOTE Some bits in this status group do not apply to the E8663B, and return zero when queried.
See Table 4-10 on page 155 for more information.

The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8
in the Data Questionable Condition Register. This group consists of the Data Questionable Calibration
Condition Register, the Data Questionable Calibration Transition Filters (negative and positive), the
Data Questionable Calibration Event Register, and the Data Questionable Calibration Event Enable
Register.

DCFM/DCQM Zero Failure
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused —m
Always Zero (0)

Data_QUl_EStionable—l Yy
8§rl;(lzlt;tri?)trl10£egister 15 14 13
Data QUEStionable + + +

»
-
l
-
d
<
<%

<

<%

-
=y
-
o

l— =
O [¢ O |4 O (& o =«

S R o |
N
=
R
o

CALibration

Positve |15 14 13 10|
ransition Filter

Data QUEStionable + + + +
CALibration |15 14 13 1 10 1 |
Negative

Transition Filter + + +

Data QUEStionable
CALibration |15 14 13 1

Event Register
; %
&
&
&
& :
Y

W W W - w

R0
20
R0
0
o)
)
i
N PR [N [N e e

~ e
9,\4
-

o

<_
© (@ O (4 O @ © [«
© (g O lg— O lg— O |
~N] Nl N e N e
O [O [O @ O [
Ol (@ O [O [O
N PP N Nqy PP [N PP BN

= |

N
-
juy
-
(@]

Data QUEStionable
CALibration

Event . 15 14 13 12 11 10 9 8 7 6 5 4 3
Enable Register

Y To Data Questionable Status Register Bit #8

154 Agilent E8663B Analog Signal Generator Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of
the signal generator. Condition registers are read only.

Table 4-10 Data Questionable Calibration Condition Register Bits

Bit Description

0 DCFM/DC®M Zero Failure. A 1 in this bit position indicates that the DCFM/DC®M zero calibration routine has
failed. This is a critical error. The output of the source has no validity until the condition of this bit is 0.

1-14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus: QUESt i onabl e: CALi brati on: COND ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESti onabl e: CALi brati on: NTRansi ti on <val ue> (negative transition), or

STATus: QUESti onabl e: CALi brati on: PTRansi ti on <val ue> (positive transition), where <val ue> is
the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: CALi br at i on: NTRansi ti on?
STATus: QUESti onabl e: CALi brat i on: PTRansi ti on?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read-only. Reading data from an
event register clears the content of that register.

Query: STATus: QUESt i onabl e: CALi brati on[: EVENt] ?

Agilent E8663B Analog Signal Generator Programming Guide 155

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable
Condition register) to 1.

Command: STATus: QUES i onabl e: CALi brati on: ENABl e <val ue>, where <val ue> is the sum of the decimal
values of the bits you want to enable.

Example: Enable bit 1 and bit 0 so that whenever either of those bits are set to 1, the Data Questionable
Calibration summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: CAL: ENAB 520 (2 + 1).

Query: STATus: QUESt i onabl e: CALi brat i on: ENAB e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: CALi br ati on: ENABI e <val ue> command.

156 Agilent E8663B Analog Signal Generator Programming Guide

5 Creating and Downloading User-Data Files

NOTE The following sections and procedures contain remote SCPI commands. For front panel key
commands, refer to the User’s Guide or to the Key help in the signal generator.

¢ “Save and Recall Instrument State Files” on page 158

¢ “Download User Flatness Corrections Using C++ and VISA” on page 169

Agilent E8663B Analog Signal Generator Programming Guide 157

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Save and Recall Instrument State Files

The signal generator can save instrument state settings to memory. An instrument state setting
includes any instrument state that does not survive a signal generator preset or power cycle such as
frequency, amplitude, attenuation, and other user-defined parameters. The instrument state settings
are saved in memory and organized into sequences and registers. There are 10 sequences with 100
registers per sequence available for instrument state settings. These instrument state files are stored
in the USER/STATE directory.

The save function does not store data such as arb formats, table entries, list sweep data and so forth.
Use the store commands or store softkey functions to store these data file types to the signal
generator’s memory catalog. The save function will save a reference to the data file name associated
with the instrument state.

Before saving an instrument state that has a data file associated with it, store the data file. For
example, if you are editing a multitone arb format, store the multitone data to a file in the signal
generator’s memory catalog (multitone files are stored in the USER/MTONE directory). Then save the
instrument state associated with that data file. The settings for the signal generator such as
frequency and amplitude and a reference to the multitone file name will be saved in the selected
sequence and register number. Refer to the signal generator’s User’s Guide, the Key Reference, or the
signal generator’s Help hardkey for more information on the save and recall functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using the *SAV command, in
sequence 1, register 01. A comment is then added to the instrument state.

*SAV 01,1
:MEM STAT: COW 01, 1, "Instrunent state comment™

If there is a data file associated with the instrument state, there will be a file name reference saved
along with the instrument state. However, the data file must be stored in the signal generator’s
memory catalog as the *SAV command does not save data files. For more information on storing file
data such as modulation formats, arb setups, and table entries refer to the Storing Files to the
Memory Catalog section in the signal generator’s User’s Guide.

NOTE File names are referenced when an instrument state is saved, but a file will NOT be stored
with the save function.

The recall function will recall the saved instrument state. If there is a data file associated with the
instrument state, the file will be loaded along with the instrument state. The following command
recalls the instrument state saved in sequence 1, register 01.

*RCL 01,1

Save and Recall Programming Example Using VISA and C#

The following programming example uses VISA and C# to save and recall signal generator instrument
states. Instruments states are saved to and recalled from your computer. This console program
prompts the user for an action: Backup State Files, Restore State Files, or Quit.

158 Agilent E8663B Analog Signal Generator Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

The Backup State Files choice reads the signal generator’s state files and stores it on your computer
in the same directory where the State_Files.exe program is located. The Restore State Files selection
downloads instrument state files, stored on your computer, to the signal generator’s State directory.
The Quit selection exists the program. The figure below shows the console interface and the results
obtained after selecting the Restore State Files operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s Manual available on
Agilent’s website: http:\\www.agilent.com for more information on VISA functions.

The program listing for the State_Files.cs program is shown below. It is available on the CD-ROM in
the programming examples section under the same name.

1> Backup state files

2> Restore state files

3> Quit

Enter 1.2,0r 3. Your choice: 2
i sequence register

sequence
quence
quence
quence
quence
sequence
sequence
quence
quence
quence
quence
sequence
gquence

register
register
register
register
register

register
register
register
register
register
register

1> Backup state files
2> Restore state files
3> Quit

Enter 1.2,.0r 3. Your choice:

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and applications. There are
three components of the .NET Framework: the common language runtime, class libraries, and Active
Server Pages, called ASP.NET. Refer to the Microsoft website for more information on the NET
Framework.

The .NET Framework must be installed on your computer before you can run the State_Files
program. The framework can be downloaded from the Microsoft website and then installed on your
computer.

Perform the following steps to run the State_Files program.

1. Copy the State_Files.cs file from the CD-ROM programming examples section to the directory
where the .NET Framework is installed.

2. Change the TCPIPO address in the program from TCPIP0::000.000.000.000 to your signal
generator’s address.

3. Save the file using the .cs file name extension.

Run the Command Prompt program. Start > Run > "ecmd.exe". Change the directory for the
command prompt to the location where the .NET Framework was installed.

5. Type csc.exe State_Fil es.cs at the command prompt and then press the Enter key on the
keyboard to run the program. The following figure shows the command prompt interface.

Agilent E8663B Analog Signal Generator Programming Guide 159

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

6. Follow the prompts in the program to save and recall signal generator instrument states.

Command Prompt {3}

Microsoft Windows 2888 [Version 5.88.21951]
{C> Copyright 1985-2888 Microsoft Corp.

C:SWINNT“Microsoft .NET“Framework-wl.1.4322%csc.exe State_Files.cs

The State_Files.cs program is listed below. You can copy this program from the examples directory on
the signal generator’s CD-ROM.

NOTE The State_Files.cs example uses the ESG in the programming code but can be used with the
E8663B.

R R T T O T T
/1 FileNane: State_Files.cs

11

/1 This C# exanple code saves and recalls signal generator instrument states. The saved
/'l instrunent state files are witten to the | ocal conputer directory conputer where the
|/ State_Files.exe is located. This is a console application that uses DLL inporting to

// allow for calls to the unmanaged Agilent 10 Library VISA DLL.

11

/1 The Agilent VISA library nust be installed on your conputer for this exanple to run.

/1 Inportant: Replace the visaOpenString with the |IP address for your signal generator.

11
T R R T
usi ng System

using System | Q

usi ng System Text;

usi ng System Runti ne. | nteropServi ces;

usi ng System Col | ecti ons;

usi ng System Text. Regul ar Expr essi ons;

160 Agilent E8663B Analog Signal Generator Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

nanespace State_Files

cl ass Mai nApp
{

/1 Replace the visaOpenString variable with your instrunent's address.

static public string visaOpenString = "TCPI PO:: 000.000. 000. 000"; //"GPIBO::19";
/1" TCPI PO: : ESG3: : | NSTR';

public const uint DEFAULT_TI MEQUT = 30 * 1000;// Instrunment tineout 30 seconds.
public const int MAX_READ DEVI CE_STRING = 1024; // Buffer for string data reads.
public const int TRANSFER BLOCK_SI ZE = 4096;// Buffer for byte data.

/1 The main entry point for the application.
[STAThr ead]

static void Main(string[] args)

{

uint defaultRM// Open the default VISA resource manager
if (Visalnterop. OpenDefaul tRMout defaultRM == 0) // If no errors, proceed.
{
ui nt device;
/1 Open the specified VISA device: the signal generator
if (Visalnterop. Open(defaul tRM visaQpenString, Vi saAccessMde. NoLock,
DEFAULT_TI MEQUT, out device) == 0)
/1 if no errors proceed.
{
bool quit = fal se;
V\/?i le ('quit)// Get user input

Consol e. Wite("1) Backup state files\n" +
"2) Restore state files\n" +
"3) Quit\nEnter 1,2,0r 3. Your choice: ");

string choice = Consol e. ReadLi ne();
switch (choice)

{
case "1":

{
Backupl nstrunent State(device); // Wite instrunent state
br eak; Il files to the conputer

Agilent E8663B Analog Signal Generator Programming Guide 161

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

case "2":
{
Rest orel nstrunent St at e(device); // Read instrunent state
break;// files to the sig gen
}
case "3":
{
quit = true;
br eak;
}
defaul t:
{
br eak;
}
}
}
Vi sal nterop. Cl ose(device);// C ose the device
}
el se
{

Consol e. WiteLine("Unable to open " + visaQpenString);

}

Vi sal nterop. Cl ose(defaul tRM ; /1 Cose the default resource manager

}
el se
{

Consol e. Wi teLine("Unable to open the VI SA resource nanager");

}

/* This method restores all the sequence/register state files located in
the local directory (identified by a ".STA" file name extension)

to the signal generator.*/

static public void RestorelnstrunmentState(uint device)
{
Directorylnfo di = new Directorylnfo(".");// Instantiate object class
Filelnfo[] rgFiles = di.CGetFiles("*.STA"); [/ Cet the state files
foreach(Filelnfo fi in rgFiles)

{
Mat ch m = Regex. Match(fi.Name, @~(\d)_(\d\d)");

162 Agilent E8663B Analog Signal Generator Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

if (m Success)
{
string sequence = m Groups[1].ToString();
string register = mGoups[2].ToString();
Consol e. Wi telLine("Restoring sequence #" + sequence +

, register #' + register);

/* Save the target instrument's current state to the specified sequence/
register pair. This ensures the index file has an entry for the specified
sequence/regi ster pair. This workaround will not be necessary in future
revisions of firmuare.*/

WiteDevice(device, "*SAV " + register + ", " + sequence + "\n",
true); // << on SAME line!

// Overwite the newy created state file with the state

/1 file that is being restored.

W iteDevice(device, "MEM DATA \"/USER/ STATE/" + mToString() + "\",",
false); // << on SAME line!

WiteFil eBl ock(device, fi.Nane);

WiteDevice(device, "\n", true);

}

/* This method reads out all the sequence/register state files fromthe signal
generator and stores themin your conputer's |local directory with a ".STA"
extension */

static public void BackuplnstrunentState(uint device)
{
// Get the menory catalog for the state directory
WiteDevice(device, "MEM CAT: STAT?\n", false);
string catal og = ReadDevi ce(device);
/* Match the catalog listing for state files which are naned
(sequence#)_(register#) e.g. 0_01, 1_01, 2_05*/
Mat ch m = Regex. Match(catal og, "\"(\\d_\\d\\d),");
whil e (m Success)
{
/1 Grab the matched filenane fromthe regul ar expresssion
string nextFile = m Goups[1]. ToString();
Il Retrieve the file and store with a . STA extension
/1 in the current directory

Agilent E8663B Analog Signal Generator Programming Guide 163

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Consol e. WiteLine("Retrieving state file:
W iteDevice(device, "MEM DATA? \"/USER/ STATE/" + nextFile + "\"\n", true);

ReadFi | eBl ock(device, nextFile + ".STA");

/1 Clear newine

+ nextFile);

ReadDevi ce(devi ce);

/1 Advance to next match in catalog string
m = m Next Mat ch();

}

/* This nmethod wites an ASCI| text string (SCPI command) to the signal generator.
If the bool "sendEnd" is true, the END line character will be sent at the
conclusion of the wite. If "sendEnd is false the END line will not be sent.*/

static public void WiteDevice(uint device, string scpi Crd, bool sendEnd)
{
byte[] buf = Encoding. ASCl | . Get Byt es(scpi Cnd) ;
if (!sendEnd) // Do not send the END |ine character

{
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 0);

}
uint retCount;
Vi sal nterop. Wite(device, buf, (uint)buf.Length, out retCount);
if (!sendEnd) // Set the bool sendEnd true.

{
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 1);

}

/1 This nethod reads an ASCI| string fromthe specified device
static public string ReadDevice(uint device)
{
string retValue =
byte[] buf = new byte[MAX_READ DEVI CE_STRING ; // 1024 bytes maxi mum read
uint retCount;
if (Visalnterop.Read(device, buf, (uint)buf.Length -1, out retCount) == 0)

{
retVal ue = Encodi ng. ASCl | . Get String(buf, 0, (int)retCount);
}

return retVal ue;

}

164 Agilent E8663B Analog Signal Generator Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

/* The follow ng nethod reads a SCPI definite block fromthe signal generator
and wites the contents to a file on your conputer. The trailing
new i ne character is NOT consuned by the read.*/

static public void ReadFil eBl ock(uint device, string fileName)
{
Il Create the new, enpty data file.
FileStreamfs = new FileStrean(fil eName, Fil eMde. Create);
/1 Read the definite block header: #{lengthDatalLength}{dataLength}
uint retCount = 0;
byte[] buf = new byte[10];
Vi sal nt er op. Read(devi ce, buf, 2, out retCount);
Vi sal nt er op. Read(devi ce, buf, (uint)(buf[1]-'0"), out retCount);
uint fileSize = U nt32. Parse(Encodi ng. ASCl | . Get String(buf, 0, (int)retCount));
/!l Read the file block fromthe signal generator
byte[] readBuf = new byte[TRANSFER BLOCK_SI ZE] ;
uint bytesRenmmining = fileSize;

whil e (bytesRenmining != 0)
{
uint bytesToRead = (bytesRemai ni ng < TRANSFER _BLOCK_SI ZE) ?
byt esRenmai ni ng : TRANSFER_BLOCK_SI ZE;
Vi sal nt erop. Read(devi ce, readBuf, bytesToRead, out retCount);
fs.Wite(readBuf, 0, (int)retCount);
byt esRenmi ni ng -= ret Count;
}
/1 Done with file
fs.d ose();
}

/* The follow ng nethod wites the contents of the specified file to the
specified file in the formof a SCPI definite block. A newine is

NOT appended to the block and END i s not sent at the conclusion of the
wite. */

static public void WiteFileBlock(uint device, string fil eNane)
{
/1 Make sure that the file exists, otherw se sends a null block
if (File.Exists(fileNane))
{
FileStreamfs = new FileStrean(fil eNanme, Fil eMde. Open);
/1 Send the definite block header: #{lengthDatalLength}{dataLength}

Agilent E8663B Analog Signal Generator Programming Guide 165

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

string fileSize = fs.Length. ToString();
string fileSizeLength = fileSize.Length. ToString();
WiteDevice(device, "#" + fileSizeLength + fileSize, false);
/1 Don't set END at the end of wites
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 0);
/1 Wite the file block to the signal generator
byte[] readBuf = new byte[TRANSFER BLOCK_SI ZE] ;
int nunRead = O;
uint retCount = 0;
while ((nunRead = fs. Read(readBuf, 0, TRANSFER BLOCK_SIZE)) != 0)
{
Vi sal nterop. Wite(device, readBuf, (uint)nunRead, out retCount);
}
/1 Go ahead and set END on writes
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 1);
/1 Done with file

fs.d ose();
}

el se

{

/1 Send an enpty definite block
WiteDevice(device, "#10", false);
}
}

}

/1 Declaration of VISA device access constants

public enum Vi saAccessMde

{
NoLock = 0,
Excl usi veLock = 1,
SharedLock = 2,
LoadConfig = 4

}

/1 Declaration of VISA attribute constants
public enum VisaAttribute
{
SendEndEnabl e = Ox3FFF0016,
Ti neout Val ue = O0x3FFF001A

166 Agilent E8663B Analog Signal Generator Programming Guide

/1 This class provides a way to call
/1 functions fromthe C# application

public class Visalnterop
{

[DIIInport("agvisa32.dl ",

public static extern

[DIIInport("agvisa32.dl ",
public static extern

[DIInport("agvisa32.dl ",
public static extern

[DIIInport("agvisa32.dl ",
public static extern int FindRsrc(
ui nt session,

string expr,

out uint findList,

retCnt,

desc);

out uint
byte[]

[DIIInport("agvisa32.dl ",

public static extern int GetAttribute(uint vi,

[DIIInport("agvisa32.dl ",
public static extern int Open(
ui nt session,
string rsrcNang,
Vi saAccessMbde accessMode,
uint tineout,
out uint vi);

[DIIlnport("agvisa32.dl ",

[DIIInport("agvisa32.dl ",
public static extern int Read(
ui nt session,
byte[] buf,
ui nt count,

out uint retCount);

the unmanaged Agil ent

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

10 Library VISA C

EntryPoi nt="vi Cl ear")]
int Clear(uint session);

Ent ryPoi nt ="vi Cl ose")]
int Close(uint session);

Ent ryPoi nt =" vi Fi ndNext")]
i nt FindNext (uint findList,

byte[] desc);

Ent ryPoi nt ="vi Fi ndRsrc")]

EntryPoi nt ="vi Get Attribute")]

VisaAttribute attribute, out uint attrState);

Ent ryPoi nt =" vi Open")]

Ent r yPoi nt =" vi OpenDef aul t RM")]
public static extern int OpenDefaul t RMout uint

session);

Ent ryPoi nt =" vi Read")]

Agilent E8663B Analog Signal Generator Programming Guide

167

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

[DIlInport("agvisa32.dl 1", EntryPoint="viSetAttribute")]
public static extern int SetAttribute(uint vi, VisaAttribute attribute, uint attrState);

[DIlInport("agvisa32.dl 1", EntryPoint="vi StatusDesc")]
public static extern int StatusDesc(uint vi, int status, byte[] desc);
[DIIlnport("agvisa32.dl 1", EntryPoint="viWite")]

public static extern int Wite(
ui nt session,
byte[] buf,
ui nt count,
out uint retCount);

168 Agilent E8663B Analog Signal Generator Programming Guide

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

Download User Flatness Corrections Using C++ and VISA

This sample program uses C++ and the VISA libraries to download user—flatness correction values to
the signal generator. The program uses the LAN interface but can be adapted to use the GPIB
interface by changing the address string in the program.

You must include header files and resource files for library functions needed to run this program.
Refer to “Running C++ Programs” on page 47 for more information.

The FlatCal program asks the user to enter a number of frequency and amplitude pairs. Frequency
and amplitude values are entered by using the keyboard and displayed on in the console interface.
The values are then downloaded to the signal generator and stored to a file named flatCal_data. The
file is then loaded into the signal generator’s memory catalog and corrections are turned on. The
figure below shows the console interface and several frequency and amplitude values. Use the same
format, shown in the figure below, for entering frequency and amplitude pairs (for example, 12ghz,
1.2db).

Figure 5-1 FlatCal Console Application

e
xample Prog to Download User Flatness Corrections I’

nter number of frequency and amplitude paivs: 2
Enter Freg 1: 12gh=

nter Power 1: 2.3db

Enter Freg 2: 15gh=

nter Power 2: 2.4db

Flatness Data saved to file : flatCal_data

Flatness Corrections Enabled

Press any key to continue

The program uses VISA library functions. The non-formatted viWrite VISA function is used to output
data to the signal generator. Refer to the Agilent VISA User’s Manual available on Agilent’s website:
http:\\www.agilent.com for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on the CD-ROM in the
programming examples section as flatcal.cpp.

Agilent E8663B Analog Signal Generator Programming Guide 169

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

[FF R R Kk ko kK kK Rk KA KK KKK Ak A A KA K KR KA KKK I KA KA KKK KR K KA KKK IR KA IR KKK R A KKK IR KK h KK XKk * K

/1 PROGRAM NAME: Fl at Cal . cpp

11

/| PROGRAM DESCRI PTI ON: C++ Consol e application to input frequency and anplitude

// pairs and then download themto the signal generator.

11

/1 NOTE: You nust have the Agilent IO Libraries installed to run this program

11

/1 This exanpl e uses the LANNTCPIP interface to downl oad frequency and anplitude

Il correction pairs to the signal generator. The program asks the operator to enter

/1 the nunber of pairs and allocates a pointer array |listPairs[] sized to the nunber
I/ of pairs.The array is filled with frequency nextFreq[] and anplitude nextPower[]

/1 values entered fromthe keyboard.

11

[REE Rk kR Rk kR kK Rk kR Rk Rk kR kR ko kR kR kR kR kR kR kR kR Rk kK kR Rk
/1 | MPORTANT: Repl ace the 000. 000.000.000 | P address in the instQpenString declaration
/1 in the code below with the I P address of your signal generator.

[R R K Rk ko kK KK KK KA KK KKK Ak A A KR K KR KKK KA IR KKK KR KKK KA KKK IR K KA KKK KR A KKK IR KK A KK XKk * K

#include <stdlib. h>
#i ncl ude <stdio. h>
#include "visa.h"
#i nclude <string. h>

Il | MPORTANT:

I Configure the following |IP address correctly before conpiling and running

char* instQpenString ="TCPI PO:: 000. 000. 000. 000: : I NSTR"; // your signal generator's |P address

const int MAX STRI NG LENGTH=20;//|ength of frequency and power strings
const int BUFFER_SI ZE=256;//1ength of SCPI command string

int main(int argc, char* argv[])
{

Vi Session defaul tRM vi;
Vi Status status = 0;

status = vi OpenDef aul t RM &def aul t RV ;//open the default resource nmanager

// TO DO Error handling here

status = vi Open(defaul tRM instOpenString, VI_NULL, VI_NULL, &vi);

170 Agilent E8663B Analog Signal Generator Programming Guide

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

if (status)//if any errors then display the error and exit the program
{
fprintf(stderr, "viOpen failed (%)\n", instOpenString);

return -1;

printf("Exanple Programto Downl oad User Flatness Corrections\n\n");
printf("Enter nunber of frequency and anplitude pairs: ");

int num= 0;
scanf ("9d", #

if (num> 0)

{
int lenArray=nunt2;//length of the pairsList[] array. This array
//will hold the frequency and anplitude arrays

char** pairsList = new char* [lenArray]; //pointer array

for (int n=0; n < lenArray; n++)//initialize the pairsList array
/| pai rsLi st [n] =0;

for (int i=0; i < num i++)

{
char* next Freq = new char[MAX_STRI NG LENGTH+1]; //frequency array
char* next Power = new char [MAX_STRI NG LENGTH+1] ; // anpl i tude array
//enter frequency and anplitude pairs i.e 10ghz . 1db

printf("Enter Freq %l: ", i+1);
scanf ("9%", nextFreq);
printf("Enter Power %d: ",i+1);

scanf ("9%", nextPower);
pairsList[2*i] = nextFreq;//frequency
pai r sLi st [2*i +1] =next Power ; / / power correction

}

unsi gned char str[256];//buffer used to hold SCPI conmand

/linitialize the signal generator's user flatness table
sprintf((char*)str,":corr:flat:pres\n"); //wite to buffer
viWite(vi, str,strlen((char*str),0); //wite to signal generator
char ¢ =',";//comm separator for SCPI conmand

for (int j=0; j< num j++) /1 downl oad pairs to the signal generator

Agilent E8663B Analog Signal Generator Programming Guide 171

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

{

sprintf((char*)str,":corr:flat:pair % % %\n",pairsList[2*j], c,
pairsList[2*j+1]); // << on SAME line!

viWite(vi, str,strlen((char*)str),0);
}
//store the downl oaded correction pairs to signal generator nenory
const char* fileName = "flatCal _data";//user flatness file nanme
/lwite the SCPI conmand to the buffer str
sprintf((char*)str, ":corr:flat:store \"%\"\n", fileNane);//wite to buffer
viWite(vi,str,strlen((char*)str),0);//wite the conmand to the signal generator
printf("\nFlatness Data saved to file : %\n\n", fileNanme);

/11 oad corrections
sprintf((char*)str,":corr:flat:load \"%\"\n", fileNane); //wite to buffer
viWite(vi,str,strlen((char*)str),0); //wite conmand to the signal generator
//turn on corrections
sprintf((char*)str, ":corr on\n");
viWite(vi,str,strlen((char*)str),0");
printf("\nFl atness Corrections Enabled\n\n");
for (int k=0; k< lenArray; k++)
{
delete [] pairsList[k];//free up nenory
}

delete [] pairsList;//free up nenory

vi Close(vi);//close the sessions
vi Cl ose(defaul tRM;

return O;

172

Agilent E8663B Analog Signal Generator Programming Guide

Symbols

NET framework, 158
A

abort function, 52, 53
address

GPIB address, 18
IP address, 23
Agilent
BASIC, See HP BASIC
e8663b
global settings, configuring, 12
setting GPIB address, 18
web server, on, 9
10 Libraries, 5
Version J, 30
Version M, 5, 27, 30
10 Libraries Suite, 27
SICL, 6, 20, 52
VISA, 6, 20, 38, 52
VISA COM Resource Manager 1.0, 48
Agilent I/0 libraries
See 10 libraries
Agilent 10 libraries
See 10 libraries
Agilent 10 Libraries Suite, 4
Agilent VISA,7
ASCII
data, 55
AUXILIARY INTERFACE, See RS-232

B
BASIC
ABORT, 52
CLEAR, 55
ENTER, 56
LOCAL, 54, 55
LOCAL LOCKOUT, 54
OUTPUT, 55
REMOTE, 53
See HP BASIC
bit status, monitoring, 130
bit values, 129

C
C, 79
AC-coupled FM signals, generating externally applied,
69
CW signals, generating, 67
data questionable status register, reading, 79
FM signals, generating internally applied, 71
reading the service request interrupt, 83
Sockets LAN, programming, 91

C, 79 (continued)
states, saving and recalling, 77
C and VISA
GPIB queries, 65
GPIB, interface check, 58
C#
programming examples, 48
remote control, 7
VISA, example, 158
C++
programming examples, 47
VISA, generating a step-swept signal, 73
C++ and VISA
generating a step-swept signal, 73
C/C++,7
clear
command, 55
function, 55
CLS command, 132
command prompt, 26, 115
commands
e8663b, 12
GPIB, 52, 53, 54, 55, 56
computer interface, 3
condition registers, description, 136
configuring, VXI-11, 30
connection
wizard, 4
connection expert, 4
controller, 19
csc.exe, 158
CW signals, generate using VISA and C, 67

D

data questionable filters
calibration transition, 155
frequency transition, 149
modulation transition, 152
power transition, 146
transition, 144

data questionable groups
calibration status, 154
frequency status, 148
modulation status, 151
power status, 145
status, 142

data questionable registers
calibration condition, 155
calibration event, 155
calibration event enable, 156
condition, 143
event, 144
event enable, 144

Index

Agilent E8663B Analog Signal Generator Programming Guide

173

Index

data questionable registers (continued)
frequency condition, 149
frequency event, 149
frequency event enable, 150
modulation condition, 152
modulation event, 153
modulation event enable, 153
power condition, 146
power event, 147
power event enable, 147
data questionable status register, reading, 79
using VISA, 79
developing programs, 46
device, add, 6
DHCP, 8, 25
DNS, 26
DOS command prompt, 32
download
user flatness, 158
waveform data
user-data files, using, 157
download libraries, 6, 7

E

edit visa config, 6

EnableRemote, 53

enter function, 56

errors, 13, 27

ESE commands, 132

event enable register
description, 136

event registers
description, 136

examples
save and recall, 158
Telnet, 36

externally applied AC-coupled FM signals
generate, using C, 69
generate, using VISA, 69

F

file transfer, 36
files
error messages, 13
filters
See also transition filters
negative transition, description, 136

G

Getting Started Wizard, 18
global settings
e8663b, 12
GPIB
address, 18, 87
configuration, 18
controller, 19
interface, 3, 18
interface cards, 16, 50
10 libraries, 6
listener, 19
overview, 16, 50
program examples, 20, 52, 58, 65
SCPI commands, 19
talker, 19
troubleshooting, 18
using VISA and C, 58
verifying operation, 18
GPIB address
e8663Db, setting, 18

H

hardware layers
remote programming, 2
hardware status, monitoring, 130
help mode
setting
e8663b, 12
hostname, 23, 87
hostname, setting, 25
e8663b, 24
e8663b menus, 23
HP BASIC, 7
HP Basic
I/0 library, 38
local lockout, 59
queries, 62
RS-232
control, 38
queries, 44, 121
HyperTerminal, 41

I/0 libraries
See 10 libraries

iabort, 52
positive transition, description, 136 ibloc, 54, 55
firmware status, monitoring, 130 ibstop, 52
flatness corrections, 169 ibwrt, 55
FTP iclear, 55
using, 36 IEEE standard, 16, 50
igpibllo, 54
174 Agilent E8663B Analog Signal Generator Programming Guide

iloc, 54
include files, 169
instrument communication, 5
instrument state files, 158
instrument status, monitoring, 126
interactive 10, 27
interactive io, 4
interface
cards, 16, 50
GPIB, 18
LAN, 3
RS-232,3
internally applied FM signals
generate, using C, 71
generate, using VISA, 71
10 Config, 4,5, 6, 28
10 interface, 5
10 libraries, 2, 4, 6, 16, 19, 27, 28, 38, 50
IP address, 23
LAN interface, 23
setting, 23, 25
setting e8663b, 24
iremote, 53

J

JAVA, 49, 115
Java, 7
example, 49, 115

L

LabView, 7
LAN
DHCP configuration, 25
hostname, 23
interface, 3
10 libraries, 7
manual configuration, 23
overview, 22
program examples, 49, 87, 115, 116
queries using sockets, 94
sockets, 87
sockets LAN, 22
Telnet, 32
verifying operation, 26
VXI-11, 87
examples, using, 87
interface protocols, 22
perl, using, 116
programming examples, LAN, 87
sockets, programming, 49, 115
LAN config, 28
LAN configuration
e8663Db, 24

LAN configuration (continued)
menu, e8663b, 23, 25
web server, 8
LAN programming, 49, 115
using JAVA, 49, 115
libraries, 19
GPIB I/0 libraries, selecting, 6
10, Agilent, 2,4
RS-232,38
selecting, for computer, 7
list, error messages, 13
listener, 19
local
echo, telnet, 35
function, 54
local lockout
HP Basic, using, 59
local lockout function, 54

M
manual operation, 53
MATLAB, 7
programming, introduction, 7
Microsoft .NET Framework
overview, 159
MS-DOS Command Prompt, 26, 32

N
National Instruments
NI-488.2, 20, 52
VISA, 6, 7, 20, 38, 52
negative transition filter, description, 136
NI libraries
SICL
GPIB I/0 libraries, selecting, 6
NI-488.2
EnableRemote, 53
functions, 6
GPIB I/0 libraries, selecting, 6
ibler, 55
ibloc, 54, 55
ibrd, 56
ibstop, 52
ibwrt, 55
LAN I/0 libraries, selecting, 7
queries using C++, 63
RS-232 I/0 libraries, selecting, 38
SetRWLS, 54
VISA, 6, 38

0

OPC commands, 132
output command, 55

Index

Agilent E8663B Analog Signal Generator Programming Guide

175

Index

output function, 55

P

PCI- GPIB, 20, 52
PERL
example, 116
ping program, 26
ping responses, 27
polling method (status registers), 130
ports, 91
positive transition filter, description, 136
programming examples
C#, 48,159
C++, 47
RS-232, queries using VISA and C, 44,122
RS-232, using VISA and C, 43,119
using, 46
using GPIB, 20, 52, 58, 65
using LAN, 49, 87, 115, 116
using RS-232, 43,118
VXI-11, 87

Q

queries
HP Basic, using, 62
queue, error, 13

R

recall states, 158
register system overview, 126
registers
See also status registers
condition, description, 136
data questionable
condition, 143
event, 144
event enable, 144
data questionable calibration
condition, 155
event, 155
event enable, 156
data questionable frequency
condition, 149
event, 149
event enable, 150
data questionable modulation
condition, 152
event, 153
event enable, 153
data questionable power
condition, 146
event, 147
event enable, 147

registers (continued)
e8663b overall system, 127,128
standard event
status, 138
status enable, 138
standard operation
condition, 140
event, 141
event enable, 141
status byte, 135
status groups, register type descriptions, 136
remote, 12
annunciator, 118
remote function
HP Basic, 53
setting
e8663b, 12
remote interface
programming, 2
RS-232, 38
remote programming
hardware layers, 2
software layers, 2
RS-232
address, 43, 118
AUXILIARY INTERFACE connector, 2
baud rate, 39
cable, 40
configuration, 39
echo, setting, 39
format parameters, 42
interface, 39
interfaces, 3
10 libraries, 38
overview, 38
program examples, 43, 118
programming examples, queries using C, 44, 122
programming examples, queries using VISA, 44,122
programming examples, using C, 119
programming examples, using VISA, 43, 119
programming examples, using VISA C, 43
settings, baud rate, 43, 118
verifying operation, 41
RS-232 queries
HP Basic, using, 44,121

S
save and recall, 158
SCPI, 7, 8, 16, 50
SCPI commands
for status registers
IEEE 488.2 common commands, 132
GPIB function statements, 19

176

Agilent E8663B Analog Signal Generator Programming Guide

SCPI error queue, 13
SCPI register model, 126
service request interrupt
reading, using VISA and C, 83
service request method
status registers, 131
using, 131
SetRWLS, 54
setting
help mode
e8663b, 12
SICL, 6, 7, 38
GPIB examples, 20, 52
iabort, 52
iclear, 55
igpibllo, 54
iloc, 54
iprintf, 55
iremote, 53
iscanf, 56
NI libraries, 6
VXI-11, programming, 88
signal generator
monitoring status, 126
sockets
example, 91, 94
Java, 49, 115
LAN, 31, 87,91
PERL, 116
UNIX, 91
Windows, 92
software layers
remote programming, 2
software libraries, 10, 4
SRE commands, 132
SRQ command, 131
SRQ method, status registers, 131
standard event status
enable register, 138
group, 137
register, 138
standard operation
condition register, 140
event enable register, 141
event register, 141
status group, 139
transition filters, 140
state files, 158
states
saving and recalling, using VISA and C, 77
status byte
e8663b overall register system, 127, 128
group, 134
register, 135

status groups
data questionable
calibration, 154
frequency, 148
modulation, 151
overview, 142
power, 145
registers, 136
standard
event, 137
operation, 139
status byte, 134
status registers
See also registers
accessing information, 130
bit values, 129
hierarchy, 126
in status groups, 136
monitoring, 130
programming, 125
SCPI commands, 132
SCPI model, 126
setting and querying, 132
standard event
bits, 138
status enable, 138
system overview, 126
using, 129
STB command, 132
system requirements, 46

T

talker, 19

TCP/IP, 8

TCPIP, 5, 28, 87

Telnet
DOS command prompt, 32
example, 36
PC, 33
UNIX, 35
using, 32
Windows 2000, 34
Windows XP, 34

transition filters
See also filters
data questionable

negative and positive, 144

data questionable calibration, 155
data questionable frequency, 149
data questionable modulation, 152
data questionable power, 146
description, 136
standard operation, 140

Index

Agilent E8663B Analog Signal Generator Programming Guide

177

Index

troubleshooting
GPIB, 18
ping response errors, 27
RS-232, 42
VISA assistant, 28

U

user flatness, 158, 169
user-data files, 157
creating, 157
downloading, 157
using C
data questionable status register, reading, 79
using VISA
data questionable status register, reading, 79

v

version M, 4
viPrintf, 55, 169
VISA, 7,38
C++, generating a step-swept signal, 73
configuration (automatic), 5
configuration (manual), 6
CW signals, generating, 67
FM signals, generating internally applied, 71

generating externally applied AC-coupled FM signals,

69
I/0 libraries, 6
LAN, using, 7
library, 20, 52
NI-488.2,6
RS-232, using, 38
scanf, 56
service request interrupt, reading, 83
states, saving and recalling, 77
viPrintf, 55
Visual C++, generating a swept signal, 74
viTerminate, 52
VXI-11, 87
VISA and C
GPIB queries, 65
GPIB, interface check for, 58
VISA Assistant
configuring and running, 28
GPIB functionality, verifying, 18
10 Config, 5
10, Using interactive, 27
troubleshooting, 28
verifying instrument communication, 27
VISA COM IO Library, 48
VISA configuration
automatic, 5
manual, 6

VISA LAN client, 27
visa.h, 169
Visual Basic, 7
IDE, 48
references, 48
Visual C++
NI-488.2, queries using, 63
VISA, generating a swept signal, 74
Visual C++ and VISA
generating a swept signal, 74
viTerminate, 52
viWrite, 169
VXI-11, 87
configuration, 30
programming, 87
using, 30
VISA, using, 89
with SICL, 88
with VISA, 89

W

web server

communicating with, 8

e8663b, 9
Windows

2000, 34

98,4

ME, 4

NT, 4,5

XP, 4,34
Windows ME, 4
Windows NT, 4

178

Agilent E8663B Analog Signal Generator Programming Guide

	Title Page
	Table of Contents
	1 Getting Started with Remote Operation
	Programming and Software/Hardware Layers
	Interfaces
	IO Libraries and Programming Languages
	Agilent IO Libraries Suite
	Windows NT and Agilent IO Libraries M (and Earlier)
	Select IO Libraries for GPIB
	Selecting IO Libraries for LAN
	Programming Languages

	Using the Web Browser
	Enabling the Signal Generator Web Server

	Preferences
	Configuring the Display for Remote Command Setups
	Setting the Help Mode

	Error Messages
	Error Message File
	Error Message Types

	2 Using IO Interfaces
	Using GPIB
	Installing the GPIB Interface
	Set Up the GPIB Interface
	Verify GPIB Functionality
	GPIB Interface Terms

	GPIB Programming Interface Examples
	Before Using the GPIB Examples
	Interface Check using HP Basic and GPIB
	Interface Check Using NI-488.2 and C++

	Using LAN
	Setting Up the LAN Interface
	Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using Telnet LAN
	Using FTP

	Using RS-232
	Selecting IO Libraries for RS-232
	Setting Up the RS-232 Interface
	Verifying RS-232 Functionality
	Character Format Parameters
	If You Have Problems

	RS-232 Programming Interface Examples
	Before Using the Examples
	Interface Check Using HP BASIC
	Interface Check Using VISA and C
	Queries Using HP Basic and RS-232
	Queries for RS-232 Using VISA and C

	3 Programming Examples
	Using the Programming Interface Examples
	Programming Examples Development Environment
	C++:programming examples;programming examples:C++;
	Running C# Examples
	Running Basic Examples
	Running Java Examples
	Running MATLAB Examples
	Running Perl Examples

	Using GPIB
	Installing the GPIB Interface Card

	GPIB Programming Interface Examples
	Before Using the GPIB Examples
	GPIB Function Statements (Command Messages)
	Interface Check using HP Basic and GPIB
	Interface Check Using NI-488.2 and C++
	Interface Check for GPIB Using VISA and C
	Local Lockout Using HP Basic and GPIB
	Local Lockout Using NI-488.2 and C++
	Queries Using HP Basic and GPIB
	Queries Using NI-488.2 and Visual C++
	Queries for GPIB Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C++
	Generating a Swept Signal Using VISA and Visual C++
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C

	LAN Programming Interface Examples
	VXI-11 Programming
	VXI-11 Programming Using SICL and C++
	VXI-11 Programming Using VISA and C++
	Sockets LAN Programming and C
	Queries for Lan Using Sockets
	Sockets LAN Programming Using Java
	Sockets LAN Programming Using PERL

	RS-232 Programming Interface Examples
	Before Using the Examples
	Interface Check Using HP BASIC
	Interface Check Using VISA and C
	Queries Using HP Basic and RS-232
	Queries for RS-232 Using VISA and C

	4 Programming the Status�Register�System
	Overview
	Status Register Bit Values
	Example: Enable a Register
	Example: Query a Register

	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group

	5 Creating and Downloading User-Data Files
	Save and Recall Instrument State Files
	Save and Recall SCPI Commands
	Save and Recall Programming Example Using VISA and C#

	Download User Flatness Corrections Using C++ and VISA

	Index

